We study the possible existence of a Newtonian regime of gravity in 1 + 1 dimensions, considering metrics in both the Kerr-Schild and conformal forms In the former case, the metric gives the exact solution of the Poisson equation in flat space, but the weak-field limit of the solutions and the non- relativistic regime of geodesic motion are not trivial. We show that using harmonic coordinates, the metric is conformally flat and a weak-field expansion is straightforward. An analysis of the non- relativistic regime of geodesic motion remains non-trivial and the weak-field potential only satisfies the flat space Poisson equation approximately.

Casadio, R., Micu, O., Mureika, J. (2022). Newtonian approximation in (1 + 1) dimensions. PHYSICA SCRIPTA, 97(12), 1-12 [10.1088/1402-4896/ac9e80].

Newtonian approximation in (1 + 1) dimensions

Casadio, Roberto;
2022

Abstract

We study the possible existence of a Newtonian regime of gravity in 1 + 1 dimensions, considering metrics in both the Kerr-Schild and conformal forms In the former case, the metric gives the exact solution of the Poisson equation in flat space, but the weak-field limit of the solutions and the non- relativistic regime of geodesic motion are not trivial. We show that using harmonic coordinates, the metric is conformally flat and a weak-field expansion is straightforward. An analysis of the non- relativistic regime of geodesic motion remains non-trivial and the weak-field potential only satisfies the flat space Poisson equation approximately.
2022
Casadio, R., Micu, O., Mureika, J. (2022). Newtonian approximation in (1 + 1) dimensions. PHYSICA SCRIPTA, 97(12), 1-12 [10.1088/1402-4896/ac9e80].
Casadio, Roberto; Micu, Octavian; Mureika, Jonas
File in questo prodotto:
File Dimensione Formato  
Newton1D_PHSSCRrev3 (003).pdf

Open Access dal 10/11/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 713.22 kB
Formato Adobe PDF
713.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/903849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact