We give a characterization of equilibrium measures for p-capacities on the boundary of an infinite tree of arbitrary (finite) local degree. For p= 2 , this provides, in the special case of trees, a converse to a theorem of Benjamini and Schramm, which interpretes the equilibrium measure of a planar graph’s boundary in terms of square tilings of cylinders.
Arcozzi N., Levi M. (2023). Equilibrium measures on trees. COLLECTANEA MATHEMATICA, 74(1), 61-79 [10.1007/s13348-021-00336-3].
Equilibrium measures on trees
Arcozzi N.;Levi M.
2023
Abstract
We give a characterization of equilibrium measures for p-capacities on the boundary of an infinite tree of arbitrary (finite) local degree. For p= 2 , this provides, in the special case of trees, a converse to a theorem of Benjamini and Schramm, which interpretes the equilibrium measure of a planar graph’s boundary in terms of square tilings of cylinders.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s13348-021-00336-3.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.