We study the Riesz -capacity of the so called Dobiński set. We characterize the values of the parameters and for which the -Riesz capacity of the Dobiński set is positive. In particular we show that the Dobiński set has positive logarithmic capacity, thus answering a question of Dayan, Fernandéz and González. We approach the problem by considering the dyadic analogues of the Riesz -capacities which seem to be better adapted to the problem.

Arcozzi, N., Chalmoukis, N. (2022). Riesz capacities of a set due to Dobiński. COMPTES RENDUS MATHÉMATIQUE, 360, 679-685 [10.5802/crmath.332].

Riesz capacities of a set due to Dobiński.

Arcozzi, Nicola;Chalmoukis, Nikolaos
2022

Abstract

We study the Riesz -capacity of the so called Dobiński set. We characterize the values of the parameters and for which the -Riesz capacity of the Dobiński set is positive. In particular we show that the Dobiński set has positive logarithmic capacity, thus answering a question of Dayan, Fernandéz and González. We approach the problem by considering the dyadic analogues of the Riesz -capacities which seem to be better adapted to the problem.
2022
Arcozzi, N., Chalmoukis, N. (2022). Riesz capacities of a set due to Dobiński. COMPTES RENDUS MATHÉMATIQUE, 360, 679-685 [10.5802/crmath.332].
Arcozzi, Nicola; Chalmoukis, Nikolaos
File in questo prodotto:
File Dimensione Formato  
CRMATH_2022__360_G6_679_0.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 542.19 kB
Formato Adobe PDF
542.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/903721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact