Recent years witnessed a remarkable increase in the availability of data and computing resources in comm-unication networks. This contributed to the rise of data-driven over model-driven algorithms for network automation. This paper investigates a Minimization of Drive Tests (MDT)-driven Deep Reinforcement Learning (DRL) algorithm to optimize coverage and capacity by tuning antennas tilts on a cluster of cells from TIM's cellular network. We jointly utilize MDT data, electromagnetic simulations, and network Key Performance indicators (KPIs) to define a simulated network environment for the training of a Deep Q-Network (DQN) agent. Some tweaks have been introduced to the classical DQN formulation to improve the agent's sample efficiency, stability and performance. In particular, a custom exploration policy is designed to introduce soft constraints at training time. Results show that the proposed algorithm outperforms baseline approaches like DQN and best-first search in terms of long-term reward and sample efficiency. Our results indicate that MDT -driven approaches constitute a valuable tool for autonomous coverage and capacity optimization of mobile radio networks.

Cellular network capacity and coverage enhancement with MDT data and Deep Reinforcement Learning

Marco Skocaj
Primo
;
Lorenzo M. Amorosa
Secondo
;
Flavio Zabini
Penultimo
;
Roberto Verdone
Ultimo
2022

Abstract

Recent years witnessed a remarkable increase in the availability of data and computing resources in comm-unication networks. This contributed to the rise of data-driven over model-driven algorithms for network automation. This paper investigates a Minimization of Drive Tests (MDT)-driven Deep Reinforcement Learning (DRL) algorithm to optimize coverage and capacity by tuning antennas tilts on a cluster of cells from TIM's cellular network. We jointly utilize MDT data, electromagnetic simulations, and network Key Performance indicators (KPIs) to define a simulated network environment for the training of a Deep Q-Network (DQN) agent. Some tweaks have been introduced to the classical DQN formulation to improve the agent's sample efficiency, stability and performance. In particular, a custom exploration policy is designed to introduce soft constraints at training time. Results show that the proposed algorithm outperforms baseline approaches like DQN and best-first search in terms of long-term reward and sample efficiency. Our results indicate that MDT -driven approaches constitute a valuable tool for autonomous coverage and capacity optimization of mobile radio networks.
Marco Skocaj; Lorenzo M. Amorosa; Giorgio Ghinamo; Giuliano Muratore; Davide Micheli; Flavio Zabini; Roberto Verdone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/903195
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact