Background. Synthetic vascular graft calcification is a serious complication of graft placement. Here, we analysed migration and osteogenic genes of human umbilical vein endothelial cells (HUVEC) cultured with a poly-L-lactic acid (PLLA) electrospun mat. The role of epigallo-catechin-3-gallate (EGCG) in pathogenic processes involving HUVEC and peripheral blood mononuclear cells (PBMCs) was also tested. Methods. HUVEC were cultured in indirect contact with PLLA for 48 h, with or without EGCG, and processed for mRNA expression. HUVEC proliferation, migration and osteogenic differentiation were evaluated after EGCG treatment. EGCG was also administrated to human PBMCs, to analyse proliferation and migration toward HUVEC cultured with PLLA. Results. HUVEC cultured with PLLA exhibited increased expression of SLUG, VIMENTIN, MMP-9 (migration, vascular remodelling) and RUNX-2 (osteogenic transcription factor). EGCG at 25 µM significantly reduced HUVEC migration, osteogenic differentiation, without affecting cell viability, and mitigated PLLA influence on SLUG, MMP-9, VIMENTIN and RUNX-2 expression. EGCG affected PBMC proliferation and migration toward PLLA in a transwell co-culture system with HUVEC. Conclusion. Our study suggests the pro-calcific effect of PLLA, proposing EGCG as an anti-inflammatory modulatory approach. Research efforts need to deepen PLLA-vascular wall interactions for preventing vascular graft failure.

Epigallocatechin-3-Gallate (EGCG) Mitigates Endothelial and Circulating Cells Alterations Following PLLA Electrospun Mat Placement / Carmen Ciavarella, Ilenia Motta, Santino Blando, Sabrina Valente, Fulvia Farabegoli, Maria Letizia Focarete, Mauro Gargiulo, Gianandrea Pasquinelli. - In: BIOMEDICINES. - ISSN 2227-9059. - ELETTRONICO. - 10:6(2022), pp. 1-12. [10.3390/biomedicines10061276]

Epigallocatechin-3-Gallate (EGCG) Mitigates Endothelial and Circulating Cells Alterations Following PLLA Electrospun Mat Placement

Carmen Ciavarella
;
Ilenia Motta;Sabrina Valente;Fulvia Farabegoli;Maria Letizia Focarete;Mauro Gargiulo;Gianandrea Pasquinelli
2022

Abstract

Background. Synthetic vascular graft calcification is a serious complication of graft placement. Here, we analysed migration and osteogenic genes of human umbilical vein endothelial cells (HUVEC) cultured with a poly-L-lactic acid (PLLA) electrospun mat. The role of epigallo-catechin-3-gallate (EGCG) in pathogenic processes involving HUVEC and peripheral blood mononuclear cells (PBMCs) was also tested. Methods. HUVEC were cultured in indirect contact with PLLA for 48 h, with or without EGCG, and processed for mRNA expression. HUVEC proliferation, migration and osteogenic differentiation were evaluated after EGCG treatment. EGCG was also administrated to human PBMCs, to analyse proliferation and migration toward HUVEC cultured with PLLA. Results. HUVEC cultured with PLLA exhibited increased expression of SLUG, VIMENTIN, MMP-9 (migration, vascular remodelling) and RUNX-2 (osteogenic transcription factor). EGCG at 25 µM significantly reduced HUVEC migration, osteogenic differentiation, without affecting cell viability, and mitigated PLLA influence on SLUG, MMP-9, VIMENTIN and RUNX-2 expression. EGCG affected PBMC proliferation and migration toward PLLA in a transwell co-culture system with HUVEC. Conclusion. Our study suggests the pro-calcific effect of PLLA, proposing EGCG as an anti-inflammatory modulatory approach. Research efforts need to deepen PLLA-vascular wall interactions for preventing vascular graft failure.
2022
Epigallocatechin-3-Gallate (EGCG) Mitigates Endothelial and Circulating Cells Alterations Following PLLA Electrospun Mat Placement / Carmen Ciavarella, Ilenia Motta, Santino Blando, Sabrina Valente, Fulvia Farabegoli, Maria Letizia Focarete, Mauro Gargiulo, Gianandrea Pasquinelli. - In: BIOMEDICINES. - ISSN 2227-9059. - ELETTRONICO. - 10:6(2022), pp. 1-12. [10.3390/biomedicines10061276]
Carmen Ciavarella, Ilenia Motta, Santino Blando, Sabrina Valente, Fulvia Farabegoli, Maria Letizia Focarete, Mauro Gargiulo, Gianandrea Pasquinelli
File in questo prodotto:
File Dimensione Formato  
biomedicines-10-01276-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/899620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact