State-of-the-Art Edge Artificial Intelligence (AI) is currently mostly targeted at a train-then-deploy paradigm: edge devices are exclusively responsible for inference, whereas training is delegated to data centers, leading to high energy and CO2 impact. On-Device Continual Learning could help in making Edge AI more sustainable by specializing AI models directly on-field. We deploy a continual image recognition model on a Jetson Xavier NX embedded system, and experimentally investigate how Attention influences performance and its viability as a Continual Learning backbone, analyzing the redundancy of its components to prune and further improve our solution efficiency. We achieve up to 83.81% accuracy on the Core50’s new instances and classes scenario, starting from a pre-trained tiny Vision Transformer, surpassing AR1*free with Latent Replay, and reach performance comparable and superior to the SoA without relying on growing Replay Examples.

ViT-LR: Pushing the Envelope for Transformer-Based On-Device Embedded Continual Learning

Alberto Dequino
Primo
;
Francesco Conti;Luca Benini
2022

Abstract

State-of-the-Art Edge Artificial Intelligence (AI) is currently mostly targeted at a train-then-deploy paradigm: edge devices are exclusively responsible for inference, whereas training is delegated to data centers, leading to high energy and CO2 impact. On-Device Continual Learning could help in making Edge AI more sustainable by specializing AI models directly on-field. We deploy a continual image recognition model on a Jetson Xavier NX embedded system, and experimentally investigate how Attention influences performance and its viability as a Continual Learning backbone, analyzing the redundancy of its components to prune and further improve our solution efficiency. We achieve up to 83.81% accuracy on the Core50’s new instances and classes scenario, starting from a pre-trained tiny Vision Transformer, surpassing AR1*free with Latent Replay, and reach performance comparable and superior to the SoA without relying on growing Replay Examples.
2022
2022 13th International Green and Sustainable Computing Conference (IGSC)
Alberto Dequino, Francesco Conti, Luca Benini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/899213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact