We develop a structural vector autoregression with stochastic volatility in which one of the variables can impact both the mean and the variance of the other variables. We provide conditional posterior distributions for this model, develop an MCMC algorithm for estimation, and show how stochastic volatility can be used to provide useful restrictions for the identification of structural shocks. We then use the model with US data to show that some variables have a significant contemporaneous feedback effect on macroeconomic uncertainty, and overlooking this channel can lead to distortions in the estimated effects of uncertainty on the economy.

Carriero A., Clark T.E., Marcellino M. (2021). Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty. JOURNAL OF ECONOMETRICS, 225(1), 47-73 [10.1016/j.jeconom.2021.07.001].

Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty

Carriero A.;
2021

Abstract

We develop a structural vector autoregression with stochastic volatility in which one of the variables can impact both the mean and the variance of the other variables. We provide conditional posterior distributions for this model, develop an MCMC algorithm for estimation, and show how stochastic volatility can be used to provide useful restrictions for the identification of structural shocks. We then use the model with US data to show that some variables have a significant contemporaneous feedback effect on macroeconomic uncertainty, and overlooking this channel can lead to distortions in the estimated effects of uncertainty on the economy.
2021
Carriero A., Clark T.E., Marcellino M. (2021). Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty. JOURNAL OF ECONOMETRICS, 225(1), 47-73 [10.1016/j.jeconom.2021.07.001].
Carriero A.; Clark T.E.; Marcellino M.
File in questo prodotto:
File Dimensione Formato  
Using_time-varying.pdf

Open Access dal 01/08/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/896614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact