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Abstract

We develop a structural vector autoregression with stochastic volatility in which one

of the variables can impact both the mean and the variance of the other variables. We

provide conditional posterior distributions for this model, develop an MCMC algorithm

for estimation, and show how stochastic volatility can be used to provide useful re-

strictions for the identification of structural shocks. We then use the model with US

data to show that some variables have a significant contemporaneous feedback effect on

macroeconomic uncertainty, and overlooking this channel can lead to distortions in the

estimated effects of uncertainty on the economy.
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1 Introduction

Starting from the seminal work of Bloom (2009), the business cycle relationship between

uncertainty and output growth and the transmission mechanism from one to the other have

received substantial attention in the literature; see Bloom (2014) for an exhaustive survey.

Various measures of uncertainty have been put forward, and several efforts have been made

to study the macroeconomic effects and broader importance of uncertainty shocks. A non-

exhaustive list of studies in this area includes Bachmann et al. (2013), Baker et al. (2016),

Basu and Bundick (2017), Bloom (2009), Bloom et al. (2018), Caldara et al. (2016), Caggiano

et al. (2014), Carriero et al. (2018, CCM), Cesa-Bianchi, et al. (2020), Jurado et al. (2015,

JLN), Rossi and Sekhposyan (2015), and Shin and Zhong (2020).

While the definitions and measurements of uncertainty differ in all these contributions,

the common denominator in this line of research is the way in which the effects of uncer-

tainty shocks are identified and assessed. Specifically, most econometric studies typically

estimate the effects of uncertainty on economic variables by using structural vector autore-

gressions with some recursive identification scheme, which all inevitably assume some type

of causal direction between uncertainty and economic variables. The assumption typically

made is that uncertainty is exogenous; i.e., it does not react contemporaneously to economic

variables, while economic variables react contemporaneously to uncertainty.1

As is well known, recursive schemes have the advantage of simplicity of implementation

and interpretation, but in some cases, they can be hard to defend as a credible identifica-

tion strategy. This is particularly true when economists have very little a priori, generally

accepted, and theoretically grounded reasons to believe that a specific recursive ordering

is valid. The study of uncertainty shocks is such a case, since the existing evidence and

economic wisdom make us unable to take a stand on the direction of the causality between

uncertainty and economic variables such as GDP growth.

The existing literature has shown that both directions of causality are plausible. For

example, the case has been made that uncertainty has effects on the economy through firms’

behavior. Firms’behavior can be influenced by uncertainty for several reasons, e.g., because

of the real option value of waiting before taking investment decisions (e.g., Bernanke 1983,

McDonald and Siegel 1986); because of the postponement of hiring and capital investment

decisions (e.g., Bloom 2009, Bloom et al. 2018, and Leduc and Liu 2012); and because

of the interaction with financial frictions constraining firms’ decisions (e.g., Arellano et

al. 2019, Gilchrist et al. 2014). From the consumers’ side, the effects of uncertainty on

the macroeconomy are possible via precautionary savings (e.g., Basu and Bundick 2017

1Exogenous as used here and in the rest of the paper is not meant to mean strict exogeneity. Rather, we

use it as shorthand for uncertainty being predetermined within the period.
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and Fernandez-Villaverde et al. 2011). Equivalently, it is reasonable to conjecture that

lower growth, typically associated with higher unemployment, tighter credit conditions, and

larger volatility in financial markets, in turn can increase uncertainty. One of the first

papers to stress the possible endogeneity of uncertainty is Bachmann et al. 2013). Using

an identification strategy in which uncertainty shocks have no long-run effects on aggregate

economic activity, they find that the uncertainty shocks then also have no effects in the short

run. Instead, various measures of uncertainty substantially increase after a negative shock

to aggregate economic activity (see, e.g., Bachmann and Moscarini 2011 and Fajgelbaum et

al. 2017).

The concern for bias arising from endogeneity of uncertainty was pointed out by Lud-

vigson et al. (2019, LMN), who developed an alternative identification strategy based on

external information, using event constraints and correlation constraints. Their estimates

indicate that macro uncertainty is mostly endogenous; i.e., it mainly reacts to growth condi-

tions rather than being an exogenous source of business cycle fluctuations, whereas financial

uncertainty is mostly exogenous.

In this paper, to allow business cycle endogeneity and assess the macroeconomic effects of

uncertainty, we develop a structural vector autoregression (VAR) with stochastic volatility

and its Bayesian posterior to identify and estimate responses to a shock to a particular

endogenous variable of interest, which in our case is uncertainty. As we show, identification

of the effects of uncertainty shocks in our model follows from the general results in Lewis

(2021) on identification in VARs with time-varying volatility. Our contributions are in the

formulation of the specific model, the derivation of the Bayesian posterior for estimation, and

the application to the effects of uncertainty shocks. In our implementation, identification is

obtained via a heteroskedasticity structure in which the time-varying conditional variances of

the variables are driven by an uncertainty measure plus a stochastic idiosyncratic component,

or just a stochastic idiosyncratic component. [While we focus on uncertainty shocks, the

identification procedure developed in this paper can be applied in any VAR featuring time

variation in the volatilities.] Our identification strategy rests on an empirical feature of

macroeconomic data – time-varying volatility – that has been well established, starting

with the seminal work of Cogley and Sargent (2005) and Primiceri (2005) on VARs with

stochastic volatility and Justiniano and Primiceri (2008) on DSGE models with stochastic

volatility. More recent studies providing corroborating evidence include, among others,

Carriero et al. (2016), Chan and Eisenstat (2018), Clark (2011), Clark and Ravazzolo (2015),

D’Agostino et al. (2013), and Diebold et al. (2017).

Methodologically, the model developed in this paper is a structural VAR with time-

varying volatility in which one of the variables (the uncertainty measure) can impact both
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the mean and the variance of the other variables. Differently from most existing approaches

in the uncertainty literature based on recursive schemes, our identification strategy permits

both a causal channel going from uncertainty to the macroeconomy and the opposite causal

channel going from the macroeconomy to uncertainty (which we will refer to as the “feedback

channel”) to be potentially relevant and quantifiable. We derive and provide conditional

posterior distributions for this model, which is a substantial extension of the leverage model

of Jacquier et al. (2004), a widely used model in the finance literature. These distributions

are nontrivial because our model entails additional layers of complication insofar as it in-

cludes VAR dynamics with contemporaneous feedback effects and the stochastic volatility

factor enters the conditional mean of the process. The correctness, effi ciency, and reliability

of the algorithm are established in Monte Carlo experiments with simulated data and with

Geweke’s (2004) test, prior to use with monthly and quarterly US datasets.

With the model, we show that some variables – specifically consumption, industrial

production, and the federal funds rate – have a significant contemporaneous feedback

effect on macroeconomic uncertainty. Our empirical application is based on both monthly

and quarterly US data. When looking at the dynamic responses, we find that in a model

of quarterly data the feedback effect has a significant impact in shaping the response of the

variables to an uncertainty shock. Instead, in a model of monthly data we find that this

effect is rather small, pointing to a limited effect of the feedback channel. With monthly

data, Angelini et al. (2019) reach a conclusion similar to ours, using discrete variance breaks

to achieve identification.

To put our approach and results in the broader context of the literature, our identi-

fication method belongs to the heteroskedasticity-based identification tradition (see, e.g.,

Rigobon 2003, Sentana and Fiorentini 2001, and the review in Kilian and Lütkepohl 2017

(chapter 14)). Our methodology differs by modeling the conditional variances via stochastic

volatility. Lewis (2020) provides another application of identification via stochastic volatil-

ity. The difference relative to earlier applications based on heteroskedasticity is nontrivial,

because stochastic volatility allows much more flexibility in the evolution of the conditional

variances than regime switching or GARCH specifications, since the time-varying volatil-

ities have their own shocks that are independent from the shocks hitting the level of the

variables. Bertsche and Braun (2020) recently developed a related approach to identifica-

tion in VARs with stochastic volatility (also drawing on the general results of Lewis 2021),

with frequentist estimation and inference. They focus on allowing the A matrix of the stan-

dard VAR with stochastic volatility to take a form more general than the usual recursive

ordering-based format, with the aim of testing the over-identifying restrictions involved in

traditional triangular schemes. However, as emphasized by Lanne et al. (2017), with such an
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approach, additional information is required to be able to attach economic meaning to the

structural shocks. We instead condition on the triangularity of the macroeconomic block of

variables and focus on modeling the simultaneity between the macro block and the measure

of uncertainty.

It is also worth mentioning that stochastic volatility makes the errors of our model non-

Gaussian, so that another way to interpret our identification procedure is that it exploits

the information in higher-order moments, rather than only in the second moments as in

traditional Gaussian VARs. In this sense, our approach also belongs to the literature on

identification in non-Gaussian models; see, for example, Lanne et al. (2017).

The paper is structured as follows. Section 2 presents the model and Section 3 discusses

identification. Section 4 develops the estimation algorithm, discusses its effi ciency and con-

vergence properties, and introduces the prior distributions on the model parameters. Section

5 provides an illustrative application and Monte Carlo experiments based on a small-scale

version of the model. Section 6 presents the main empirical results. Section 7 summarizes

our main findings and concludes. The paper’s appendix contains derivations.2

2 A model of endogenous uncertainty

2.1 Model specification

Our interest is in modeling the relationship between a set of economic variables, which we

collect in the n-dimensional vector process yt, and an observable scalar process, which we

label mt. We specify the following model:

yt = Πy(L)yt−1 + Πm(L) lnmt−1 + φ lnmt +A−1Σ0.5
y,t ε
∗
t (1)

lnmt = δy(L)yt−1 + δm(L) lnmt−1 + ψΣ0.5
y,t ε
∗
t + ũt, (2)

where Πy(L) is an n × n matrix polynomial, Πm(L) is an n × 1 vector polynomial, φ is a

n × 1 vector, δy(L) is a 1 × n vector polynomial, δm(L) is a scalar polynomial, and ψ is a

1 × n vector. The n × n matrix A−1, which describes the contemporaneous relationships

among the economic variables, is lower triangular with ones on the main diagonal. Σy,t

is an n × n diagonal matrix of state variables, with σ2
jt denoting the j-th element on the

diagonal. The shocks ε∗t ∼ iid N(0, In) and ũt ∼ iid N(0, σ2
ũ) are mutually independent. In

the model above we have omitted intercepts for notational simplicity. Intercepts and any

other exogenous variables can be added to equations (1) and (2) without any substantial

change in the identification and estimation analysis presented below.

2Replication files and a supplementary appendix with additional results and robustness checks can be

found at https://didattica.unibocconi.eu/mypage/index.php?IdUte=49257&idr=8345&lingua=eng.
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The model (1)-(2) is a structural VAR for the (n+ 1)-dimensional vector (y′t lnmt)
′, in

which the shocks

ε̃t = Σ0.5
y,t ε
∗
t (3)

are serially uncorrelated and conditionally heteroskedastic structural (i.e. mutually uncorre-

lated) shocks. In our application lnmt will be an observable scalar measure of uncertainty.3

Clearly in a more general context lnmt could be any other variable which the researcher is

interested in modeling as potentially endogenous, for example a policy variable.

There are two major features that differentiate this model from the VARs typically used

in the uncertainty literature (e.g., in studies such as Bloom 2009 and JLN). First, the model

allows for bilateral simultaneity between economic variables and uncertainty. Specifically,

the model allows for both i) the contemporaneous effects of a shock to uncertainty on the

economic variables, as measured by ∂yt/∂ũt = φ, and ii) the contemporaneous effect of a

shock to economic variables on uncertainty, as measured by ∂ lnmt/∂ε̃t = ψ (we will refer

to this as the “feedback effect”). This bilateral simultaneity is typically not present in the

traditional implementations of uncertainty VARs, and is in general not achievable within

the class of Gaussian models, since the number of reduced-form coeffi cients available in such

models is insuffi cient to pin down all of the contemporaneous relations across variables.

The second major feature of the model proposed here is that the disturbance term to the

first block of equations (i.e., A−1ε̃t) is heteroskedastic. The assumption of heteroskedastic-

ity in a VAR of macroeconomic variables has overwhelming support in the recent literature

(see, e.g., Chan and Eisenstat 2018 and the other studies cited in the introduction), and

many uncertainty measures are constructed on the basis of some variant of a time-varying

volatility model (e.g., the measures put forward by JLN and LMN). Lewis (2021) also pro-

vides evidence of persistent time variation in the volatility of a wide range of macroeconomic

indicators. However, the large majority of uncertainty VARs does not exploit this feature of

the data.4 In this paper we show that – besides providing a better description of the data

– the assumption of heteroskedasticity allows us to simultaneously identify the coeffi cient

vectors φ and ψ, drawing on Lewis’(2021) general results on identification in VARs with

time-varying volatility. Indeed this assumption implies that the VAR is unconditionally

not Gaussian, which provides additional identifying information in the form of additional

reduced-form moments.

The model in (1)-(2) nests some other models that previously appeared in the literature.

3The uncertainty measure could also be treated as unobservable. In this case, an additional step in the

MCMC sampler would be needed in order to draw from its conditional posterior distribution. Carriero et al.

(2018) consider such an approach, but without allowing for endogenous uncertainty.
4Exceptions are Carriero et al. (2018), Creal and Wu (2017), and Shin and Zhong (2020); however, all of

these papers do not allow for a contemporaneous feedback.
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Setting n = 1, Σy,t = mt, φ = 0 and dropping the VAR dynamics as well as the Σ0.5
y,t in

equation (2) provides the model of Jacquier et al. (2004). Setting ψ = 0 provides the

model of Carriero et al. (2018). Finally, setting ψ = 0 and shutting down time variation

in volatilities (Σy,t = Σ) provides the homoskedastic VAR specification of Jurado et al.

(2015). All these contributions set either φ or ψ to a vector of zeros. As we shall see, this is

equivalent to achieving identification by means of a triangular recursive structure in which

uncertainty is ordered first (ψ = 0) or last (φ = 0) in a VAR.

The model in (1)-(2) is obviously a re-parameterization of a reduced-form model in which

both structural shocks ε̃t and ũt appear in both the equation for yt and the equation for

lnmt.5 This representation can be seen as a semi-structural form of the model, with equation

(1) in the structural form (it depends only on the structural shocks ε̃t) and equation (2) in

the reduced form (it depends on a linear combination of ε̃t and ũt). The semi-structural

form is helpful for deriving the model’s posterior and building the effi cient MCMC algorithm

for estimation detailed below.

2.2 Law of motion of the volatilities

The structural VAR in (1)-(2) and the general results on identification in Lewis (2021) admit

a wide array of possibilities for modeling the latent state variables in the matrix Σy,t. For our

approach, a general specification for the unobserved volatility process σjt for each variable

j is given by:

σ2
jt = Πk

i=1z
βji
it hjt(ωj , η̃jt), (4)

where zit, i = 1, . . . , k, are k log-normally distributed observable variables and βji are load-

ings measuring the effect of the i-th variable zit on the j-th volatility σ2
jt. The hjt are log-

normal unobservable states featuring the Markov property and ωj are coeffi cients modeling

their evolution. The shocks η̃jt are i.i.d. across time (but they can be mutually contempora-

neously correlated) and are assumed to be independent from the shocks to equations (1)-(2).

Clearly, equation (4) (for j = 1, . . . , n) represents the transition equation of a state-space

system in which the observation equations are given by (1)-(2).

Based on substantial empirical support in Carriero et al. (2016, 2018, 2019) and JLN for

some commonality in macroeconomic volatility, we use the specification:

σ2
jt = m

βj
t hjt, j = 1, . . . , n, (5)

where mt is the measure of uncertainty (and is common to all the volatilities for which

5This can be easily seen by inserting the expression for lnmt shown in (2) into the right-hand side of (1),

which provides a reduced-form representation in which both equations contain both shocks ε̃t and ũt.
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βj 6= 0), and hjt are idiosyncratic volatility states with transition equation

lnhjt = αj + δj lnhjt−1 + η̃jt, j = 1, . . . , n, (6)

with η̃jt ∼ iid N(0, σ2
η̃j

) and independent from η̃it, i 6= j, ε∗t , ũt. Equation (6) is specified

in logarithms, as is common in stochastic volatility models to implicitly implement non-

negativity constraints. Note that in this specification σ2
jt is an entirely unobservable state

variable, with a log-normal distribution. Taking the logarithms of both sides of (5) shows

that the (log) time-varying conditional variance of each variable in yt is decomposed into a

component common to all variables and given by the observable uncertainty measure mt,

plus a variable-specific, unobservable stochastic component hjt:

lnσ2
jt = βj lnmt + lnhjt, j = 1, . . . , n. (7)

In the expression above, the loading βj measures the elasticity of the volatility of variable

j to the common volatility factor mt. Moreover, note that specification (5) implies that the

measure of uncertainty is allowed to impact not only the conditional mean of the economic

variables (which happens through the term φ lnmt in (1)) but also the conditional variance.

Even though σ2
jt depends on an observable variable mt, the term hjt implies that the overall

σ2
jt is still an unobservable variable. The next section discusses the features of the volatility

process needed for identification of the effects of a shock to uncertainty.

A notable special case of (5) can be obtained by setting βj = 0, j = 1, . . . , n: This yields

a specification of time-varying volatility analogous to that originally introduced by Cogley

and Sargent (2005) and Primiceri (2005), eventually becoming a standard specification for

macroeconomic VARs with time variation in volatility.6 We will use this simpler specification

for an illustrative univariate (n = 1) example and in the Monte Carlo exercise.

Of course, more general specifications for σ2
jt are possible, as shown in (4). Also, con-

sistent with (4), lnhjt does not need to be an autoregression, but it could be modeled as

a discrete state variable describing a limited number of regimes, as in Markov switching

or threshold models. The choice of a good specification is key to obtain effi ciency, but,

for a range of specifications, the choice does not impact identification. Lewis (2021) shows

that heteroskedasticity per se can be suffi cient to provide identification under fairly general

conditions, regardless of whether the heteroskedasticity is well specified in the model.

6The restricted specification with βj = 0 is analogous to the models of Cogley and Sargent (2005) and

Primiceri (2005) in that this paper’s restricted specification for volatility takes an AR(1) form, whereas

these earlier studies used random walks. In addition, the Primiceri (2005) formulation is slightly different

as it allows for correlation across the shocks η̃it. This could be also allowed for in our approach with no

consequences on identification. Koop and Potter (2007) show that stochastic volatility can be interpreted as

a more continuous version of change-points.
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3 Identification

To show that the coeffi cients of the model are identified we rely on the recent results of

Lewis (2021). In Lewis’notation, equations (1)-(2) can be written as:

A(L)Yt = Hεt, (8)

where Yt = (y′t lnmt)
′, εt = (ε̃′t ũt)

′, and

A(L) =

[
In −Πy(L)L− φδy(L)L −Πm(L)L− φδm(L)L

−δy(L)L 1− δm(L)L

]
, (9)

H =

[
A−1 + φψ φ

ψ 1

]
. (10)

The impact matrix H is time invariant and full rank (with determinant |A−1 +φψ−φψ||1| =
1), which satisfies Assumption (B) of Lewis (2021). The n+1-dimensional vector εt satisfies

Assumptions (A) and (C) of Lewis (2021). In particular, it has conditional mean E[εt|σ2
t ] = 0

(Assumption A.1) and diagonal conditional variance (Assumption A.2)

V ar[εt|σ2
t ] =

[
Σy,t 0

0 σ2
ũ

]
≡ Σt = diag(σ2

t ),

where σ2
t is a n+ 1 vector comprised of σ2

jt, j = 1, . . . , n, and the coeffi cient σ2
ũ. Moreover,

since hjt, j = 1, . . . , n, are mutually independent log-normal processes featuring finite first

and second moments for each t = 1, . . . , T , the moments E[σ2
t ] and E[vec(εtε

′
t)vec(εtε

′
t)
′]

exist and are finite for each t = 1, . . . , T (Assumption A.3 and Assumption C). As noted

in Lewis (2021) the latter are merely requirements of existence of higher moments.7 They

ensure that all of the expectations used are well defined for an object at a particular point

in time, even if the distribution might be different at another point in time. Stationarity

has not been assumed and is not required. In this representation, the elements of the lag

polynomial A(L) of the reduced-form representation are functions of the conditional mean

parameters of the model as represented in equations (1)-(2), the elements of the impact

matrix H are functions of A−1, φ, and ψ, and Σt contains the elements of the conditional

variance.

Define ηt = Hεt and ζt = vech(ηtη
′
t), where vech(·) is the vector half operator (vector-

izing the lower triangular half of a matrix). The autocovariance matrix of ζt is:

Cov[ζtζ
′
s] = L(H ⊗H)GM(H ⊗H)′L′, (11)

7 In order to further clarify this point, Lewis (2021) employs a particular notation in which Et[zt] and

Covt,s[zt, zs] denote unconditional moments of the generic variable zt at time t. We do not follow this

convention to avoid confusion with the more common notation in which the t subscript denotes a conditional

expectation.
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where L is a matrix selecting the lower triangular elements of (H ⊗ H)vec(Σt), G is a

selection matrix such that Gσ2
t = vec(Σt), and

M = Cov[σ2
t , σ

2
s]G
′ + E[σ2

t vec(εsε
′
s − Σs)

′]. (12)

In his Theorem 1, Lewis (2021) shows that under the two conditions (i) M is at least of

rank 2, and (ii) M has no proportional rows, the impact matrix H is uniquely identified

up to sign and column permutations. Note that condition (ii) does not rule out linearly

dependent rows; it only rules out one row being a scalar multiple of another.

As we discuss below, for these conditions to hold it is suffi cient that the volatilities in

the vector σ2
t have idiosyncratic variation. Moreover, it is preferable for the idiosyncratic

variation to be suffi ciently persistent to ensure there are no issues of weak identification,

which appears to be the case in macroeconomic data. For example, Lewis (2021) provides

evidence of persistent time variation in the volatility of a wide range of macroeconomic

indicators, and we find the same results in a reduced-form analysis based on our dataset, as

documented in Section 6.2 below.

3.1 Illustrative example

To shed light on identification and in particular the role of the parameters of the conditional

volatility process, consider the special case of the model (1)-(2), with 1 lag and with n = 1:

yt = Πyyt−1 + Πm lnmt−1 + φ lnmt + ε̃t, (13)

lnmt = δyyt−1 + δm lnmt−1 + ψε̃t + ũt, (14)

where ε̃t =
√
σ2
y,tε
∗
t , ũt =

√
σ2
ũu
∗
t are mutually independent (structural) shocks with u

∗
t ∼

iid N(0, 1), ε∗t ∼ iid N(0, 1). Here, yt is a scalar economic variable of interest, for example,

GDP growth, while mt denotes an observable uncertainty measure. The conditional mean

of yt depends on contemporaneous (log) uncertainty through the term φ lnmt. Uncertainty

is endogenous, as it depends on the contemporaneous value of yt through the term ψε̃t. The

conditional volatility process for y is σ2
y,t = mβ

t ht, with lnht = α+ δ lnht−1 + η̃t.
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In Lewis’matrix notation (8), this smaller model takes the form:[
1− (Πy + φδy)L −(Πm + φδm)L

−δyL 1− δmL

]
A(L)

[
yt

lnmt

]
=

[
1 + φψ φ

ψ 1

]
H

[
ε̃t

ũt

]
.

As we discussed in the previous subsection on the general model, the impact matrix H and

the vector εt = (ε̃′t ũ
′
t)
′ satisfy Assumptions (A), (B), and (C) of Lewis (2021). We will now

verify that the conditions required by Lewis’(2021) Theorem 1 are satisfied in this simple

example. The matrix G′ appearing in (12) is:

G′ =

[
1 0 0 0

0 0 0 1

]
.

Adding the two terms8 of the M matrix appearing in (12) we have:

M =


Covt,s[σ

2
y,t, σ

2
y,s]

+E[σ2
y,tσ

2
y,s(ε

∗2
s − 1)]

√
σ2
ũE[σ2

y,t

√
σ2
y,sε
∗
su
∗
s]

√
σ2
ũE[σ2

y,t

√
σ2
y,sε
∗
su
∗
s] σ2

ũE[σ2
y,t(u

∗2
s − 1)]

σ2
ũE[σ2

y,s(ε
∗2
s − 1)] (σ2

ũ)3/2E[
√
σ2
y,sε
∗
su
∗
s] (σ2

ũ)3/2E[
√
σ2
y,sε
∗
su
∗
s] 0

 .
(15)

Consider the determinant of the submatrix composed of the first and last column, which

is −σ4
ũE[σ2

y,s(ε
∗2
s − 1)]E[σ2

y,t(u
∗2
s − 1)]. Recall from (5) that σ2

y,t depends on mt, which in

turn depends on the shocks ε∗s, u
∗
s via the simultaneous model (1)-(2). Therefore both

E[σ2
y,s(ε

∗2
s − 1)] and E[σ2

y,t(u
∗2
s − 1)] are in general different from 0. It follows that (15) has

rank 2, which satisfies both requirements that (i) M is at least of rank 2 and (ii) M has no

proportional rows.

The argument above needs to be slightly changed if one wants to consider a simpler

specification for the volatilities, in which β = 0, so that (5) simplifies to σ2
y,t = ht. Since ht

is independent from ε∗s, u
∗
s, the moment matrix in (15) simplifies to:

M =

[
Cov[ht, hs] 0 0 0

0 0 0 0

]
,

which has reduced rank 1. However, in this case one can invoke Lewis’Theorem 2, which

states that one can also consider the alternative moment matrix[
M E[σ2

s]
]

=

[
Cov[ht, hs] 0 0 0 E[h2

s]

0 0 0 0 σ2
ũ

]
, (16)

and use the same conditions required for the matrix M alone. The moment matrix in

(16) has rank 2 since the submatrix involving the first and last column has determinant

8See Appendix A for a derivation of each of these two terms.
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Cov[ht, hs]σ
2
ũ, which is nonzero and finite as long as ht has some amount of persistence,

which is ensured by having δ 6= 0 in the AR process for ht.

The identifying information comes from the time-variation in the volatility term σ2
y,t.

To clarify this point, suppose that σ2
η̃ −→ 0. In this case σ2

y,t will no longer be a random

state variable, but rather will converge to a fixed σ2
y. When this happens, the matrix M in

(15) approaches 0:

M =


0 + σ2

y
2
E[(ε∗2s − 1)]︸ ︷︷ ︸

=0

√
σ2
ũσ

2
y

√
σ2
yE[ε∗su

∗
s]︸ ︷︷ ︸

=0

√
σ2
ũσ

2
y

√
σ2
yE[ε∗su

∗
s]︸ ︷︷ ︸

=0

σ2
ũσ

2
yE[(u∗2s − 1)]︸ ︷︷ ︸

=0

σ2
ũσ

2
yE[(ε∗2s − 1)]︸ ︷︷ ︸

=0

(σ2
ũ)3/2

√
σ2
yE[ε∗su

∗
s]︸ ︷︷ ︸

=0

(σ2
ũ)3/2

√
σ2
yE[ε∗su

∗
s]︸ ︷︷ ︸

=0

0

 ,
and therefore the required conditions for identification are no longer satisfied. The same

applies in the simpler β = 0 case.

As this example indicates, based on the results in Lewis (2021), the identification of

uncertainty shocks in our model with time-varying volatility rests on the presence of random

variation in the volatility (with some persistence when the volatility process does not contain

a common factor). As noted above, the assumption of heteroskedasticity in a VAR of

macroeconomic variables has strong empirical support (see, e.g., Chan and Eisenstat 2018

and the other studies cited in the introduction), and Carriero et al. (2018) provide evidence

of idiosyncratic components in stochastic volatility. Lewis (2021) also provides evidence of

persistent time variation in the volatility of a wide range of macroeconomic indicators.

The intuition behind the general identification of the model can be explained in two

ways: by looking at either the conditional or the unconditional moments of the shocks.

Starting with the intuition based on conditional moments, when σ2
η̃ > 0, more moments

become available from the reduced form, because time variation in ht means that we have

more reduced-form error-variance matrices (each corresponding to a different point in time).

The simplest way to think about this is within the textbook example ut = B−1et, where et is

the structural shock (with an identity variance matrix) and ut the reduced-form shock, with

variance Σ. B−1 is a full matrix describing the contemporaneous relationships among the

variables. Since Σ has only n(n+1)/2 free parameters, while B has n2 free parameters, there

is incomplete identification. Now, assume we have two regimes: one with Σ = Σ(h1) and

the second with Σ = Σ(h2). This doubles the number of parameters from the reduced form,

which becomes n(n + 1), and therefore, the order condition for identification is satisfied.9

This approach to identification makes the implicit assumption that the contemporaneous

relationships among the variables (those described by the matrix B−1) are constant over

9This line of argument was first put forward by Rigobon (2003), even though it is important to stress

that in our approach σ2y,t is a state variable and not a vector of parameters.
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time.

The intuition based on unconditional moments is related to Gaussianity. A Gaussian

random variable is entirely defined by its first two moments (which are suffi cient statistics).

In the case of shocks, the first moment is 0 so we are left with the second moments (variances)

only. The problem of identification arises precisely because the variance-covariance matrix

of the Gaussian shocks has only n(n + 1)/2 free coeffi cients, which often are not enough

to identify all the contemporaneous relations we would like to (which are typically n2).

However, in the case of a non-Gaussian random variable, higher-order moments can provide

additional information for identification. In the case at hand, if σ2
η̃ = 0, then the shocks

are Gaussian, and therefore, we have the identification problem. Instead, if σ2
η̃ > 0, the

shocks are not Gaussian (they are a mixture of Gaussians with mixture weights
√
σ2
y,t), and

therefore, we have identification.

3.2 Identification conditions in the general case

In the general case with n > 1, the moment matrixM has dimension (n+1)× (n+1)2. The

identification conditions are that (i) M is at least of rank 2 and (ii) M has no proportional

rows. It is suffi cient to find a (n + 1) × (n + 1) submatrix of M which satisfies these

conditions. Consider the following submatrix of M collecting the columns in positions

1, (n+ 1) + 2, 2(n+ 1) + 3, 3(n+ 1) + 4, . . . , n(n+ 1) + (n+ 1):



cov(σ2
1t, σ

2
1s)+

E[σ2
1tσ

2
1s(ε

∗2
1s − 1)]

cov(σ2
2t, σ

2
1s)+

E[σ2
2tσ

2
1s(ε

∗2
1s − 1)]

...

cov(σ2
ntσ

2
1s)+

E[σ2
ntσ

2
1s(ε

∗2
1s − 1)]

σ2
ũE[σ2

1s(ε
∗2
1s − 1)]


· · ·



cov(σ2
1tσ

2
ns)+

E[σ2
1tσ

2
ns(ε

∗2
ns − 1)]

cov(σ2
2tσ

2
ns)+

E[σ2
2tσ

2
ns(ε

∗2
ns − 1)]

...

cov(σ2
nt, σ

2
ns)+

E[σ2
ntσ

2
ns(ε

∗2
ns − 1)]

σ2
ũE[σ2

ns(ε
∗2
ns − 1)]





σ2
ũE[σ2

1t(u
∗2
s − 1)]

σ2
ũE[σ2

2t(u
∗2
s − 1)]

...

σ2
ũE[σ2

nt(u
∗2
s − 1)]

0




.

Writing this matrix compactly we have:[
cov(σ2

t , σ
2
s) + E[σ2

tσ
2
s(ε
∗2
s − 1)] σ2

ũE[σ2
t (u
∗2
s − 1)]

σ2
ũE[σ2

s � (ε∗2s − 1)]′ 0

]
, (17)

where � denotes element-by-element multiplication and 1 denotes a column vector of ones.

Since σ2
jt = m

βj
t hjt and mt depends on ε∗2t and u∗2t , the expectations E[σ2

s � (ε∗2s − 1)]′ and

E[σ2
t (u
∗2
s − 1)] appearing in the last row and column of (17) are both non-zero. This is

suffi cient to ensure that the entire matrix in (17) has rank at least 2. Indeed, consider the

12



sub-matrix formed by the last 2 elements of the last 2 rows and columns:[
cov(σ2

nt, σ
2
ns) + E[σ2

ntσ
2
ns(ε

∗2
ns − 1)] σ2

ũE[σ2
nt(u

∗2
s − 1)]

σ2
ũE[σ2

ns(ε
∗2
ns − 1)] 0

]
.

This matrix has full rank, regardless of the value of the north-west element. The same ap-

plies to any other 2×2 sub-matrix formed using the last row and last column of (17), and it

is a consequence of the fact that ũt is homoskedastic (hence its volatility has zero autocovari-

ance), while σ2
t is correlated with ε

∗2
t and u∗2t . The second condition for identification is that

there are no two proportional rows (columns) in (17). This condition is satisfied because the

states h1t, . . . , hnt are mutually independent, thereby introducing idiosyncratic variation in

the volatility states σ2
t . Note that persistence in the idiosyncratic states h1t, . . . , hnt is not

necessary, but it is desirable to avoid weak identification issues.

In the case with no factor structure (β = 0), we have that σ2
jt = hjt and is uncorrelated

with ε∗2t and u∗2t ; hence, the elements E[σ2
tσ

2
s(ε
∗2
s − 1)], E[σ2

s � (ε∗2s − 1)]′, and E[σ2
t (u
∗2
s −

1)] are all zero and the matrix in (17) simplifies to[
cov(h2

t , h
2
s) 0

0 0

]
,

where ht is the vector of idiosyncratic volatility states h1t, . . . , hnt. Since these states are

mutually independent, the matrix cov(h2
t , h

2
s) is diagonal and has determinant ΠN

j=1Cov(h2
jt).

This determinant will be non-zero if there is suffi cient persistence, i.e. if δj 6= 0, j = 1, . . . , n,

in (6), in which case cov(h2
t , h

2
s) will have full rank n and both identification conditions on

the matrix (17) will be satisfied. Note that if just one δj = 0, then the matrix (17) contains

two rows of zeros (the first being the j-th row and the second being the last row) and

therefore the second condition for identification would not be satisfied. Hence in this case

the idiosyncratic variation must have some degree of persistence.

3.3 Structure of the impact matrix and identification of macroeconomic

shocks

Lewis’result states that H is identified up to a column permutation.10 This means that the

model

A(L)Yt = HPεt = H∗εt,

10Lewis (2021) also assumes H to have a unit diagonal, whereas the upper left block of the H matrix

implied by our model does not, due to the φψ term. However, as Lewis notes, the unit diagonal is just a

convenient normalization in his setting. Departing from this normalization with our model and its different

normalization does not impact the line of reasoning regarding identification.
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where P is a permutation matrix, is observationally equivalent to (8). Therefore, while

the theorem ensures statistical identification, economic identification must be achieved by

labeling the various shocks of εt. In our model this labeling is automatically achieved

through the special structure (10) imposed on the impact matrix H. Under this structure,

the n × n north-west block is
[
A−1 + φψ

]
, which is a uni-triangular matrix A−1 plus the

products of the elements in the last column φ and last row ψ. There are no H∗ = HP

matrices satisfying such a structure except the one resulting from the trivial permutation

in which P is the identity matrix.

The restrictions on A−1 could be relaxed while still keeping the system statistically

identified, but at the cost of losing economic identification. A lower triangular A−1 pins

down the macroeconomic shocks ε∗t and allows us to interpret economically the coeffi cients

in ψ and φ. Consider again the impact matrix:

H =





1 + φ1ψ1 φ1ψ2 · · · · · · φ1ψn

a21 + φ2ψ1 1 + φ2ψ2

...

a31 + φ3ψ1 a32 + φ3ψ2
. . .

...
...

... 1 + φn−1ψn−1 φnψn

an1 + φnψ1 an2 + φnψ2 · · · ann−1 + φnψn−1 1 + φnψn





φ1
...
...

φn−1

φn


[
ψ1 ψ2 · · · ψn−1 ψn

]
1


.

The structure above tells us a lot about the simultaneity between the macro block and the

uncertainty block.

Consider first the case in which φ = 0. In this case, the matrix H becomes a lower uni-

triangular matrix. This corresponds to a Cholesky ordering in which the uncertainty measure

is ordered last. The shocks ε∗t are economically identified by a recursive scheme in which the

j-th shock impacts contemporaneously only the first j variables. Then consider the case in

which ψ = 0. In this case, H is not lower uni-triangular, but it still corresponds to a Cholesky

ordering in which the shocks ε∗t are economically identified by a recursive scheme.
11 In this

case the uncertainty measure is ordered first, so that it only contemporaneously impacts

itself.

When both φ and ψ are simultaneously non-zero, uncertainty is ordered neither first nor

last; it rather has the simultaneity and feedback loops we want to capture. This simultaneity

also means that the shocks to the macro variables ε∗t have contemporaneous effects on all of

11One could see that this is indeed a lower triangular Cholesky scheme with uncertainty ordered first by

re-ordering both the equations (i.e., the variables in Yt) and the columns of H. Specifically, one should move

the last equation in the first position, getting Yt = (lnmt y
′
t)
′, and move the last row and column of H to

make them the first row and column.
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the other macro variables, through the contemporaneous increase in uncertainty. Still, note

that the shocks ε∗t are economically identified because, after removing the impact effects

driven by uncertainty (φψ), they follow a recursive Cholesky scheme.

In summary, the requirement for A−1 to be lower uni-triangular is desirable to econom-

ically identify the macroeconomic shocks ε∗t and therefore give economic meaning to the

coeffi cients in ψ and φ. It has the added advantage that a model with lower triangular

A−1 has become a workhorse of macro-econometrics since the seminal papers of Cogley and

Sargent (2005) and Primiceri (2005).12 But of course, this also means that different permu-

tations of the variables within the macro block might deliver different shocks ε∗t , and this

can translate into different coeffi cients ψ and φ. In practice, we have experimented with

several alternative orderings in both the monthly and the quarterly model, and the effect

of having different orderings within the macro block has a rather limited impact on the

estimated ψ coeffi cients. Section 3 in the supplementary appendix provides these results.

Of course, one could use alternative strategies to label the shocks ε∗t , and avoid imposing

a recursive structure in A−1. Our framework and algorithm allow for a non-triangular

A−1 matrix, and even for a full A−1 matrix. In both cases, there would be full statistical

identification of the shocks. However if one wanted to have economic identification, some

restrictions on A−1 would be required in order to be able to label the shocks. In terms of

estimation, a full A−1 matrix could present more problems simply because it contains more

parameters than a triangular one, but the same approach to estimation proposed in Section

4 (i.e., a Random Walk Metropolis step) could be used

3.4 Relation to the literature

The previous discussion clarifies that our method belongs to the family of methods for

heteroskedasticity-based identification, considered in papers such as Rigobon (2003) and

Lanne and Lütkepohl (2008).13 Another related strand of research considers identification

in non-Gaussian models; see, for example, Lanne et al. (2017).14 Kilian and Lütkepohl

(2017) provide an excellent survey.

There is, however, a key difference between our approach and the approach of these stud-

ies: in all of the contributions listed above, volatilities are either deterministic parameters

12Bognanni (2018) develops an alternative formulation and estimation algorithm that addresses the order-

ing dependency which exists with the standard VAR with time-varying parameters and stochastic volatility.
13Angelini et al. (2019) extend this approach to identify the effects of uncertainty shocks allowing for

endogeneity, finding that – in a monthly dataset – the uncertainty shocks can be treated as exogenous.
14The Lanne et al. (2017) approach nests a number of other identification procedures based on condi-

tional heteroskedasticity, including Normandin and Phaneuf (2004), Lanne et al. (2010), and Lütkepohl and

Netšunajev (2017).
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or are driven by (functions of) the same shocks driving the observable variables. Instead,

in our approach, volatilities are unobservable state variables driven by their own shocks. It

is precisely this feature that complicates identification, because the unobservable volatility

states cannot be recovered even asymptotically.

This problem is particularly evident by comparing our approach with Sentana and

Fiorentini (2001), which also considers models with time-varying conditional volatility, but

based on a GARCH specification. The GARCH specification is unique in that it allows

the reduced-form time-varying covariances to be deterministically recovered from the ob-

servations. This does not happen in stochastic volatility models, since in these models the

time-varying covariances have their own innovations and therefore are not recoverable from

the observable variables. Bertsche and Braun (2020) consider frequentist estimation and

inference in VARs with stochastic volatility, and they also must rely on the nonparametric

arguments in Lewis (2021) to prove identification.

Finally, our identification strategy differs from the procedure introduced by LMN to

identify the effects of uncertainty shocks. The latter achieves identification by imposing

“event constraints,” in the terminology of LMN, requiring the identified shocks to be co-

herent with economic reasoning when some extraordinary events happen, and “external

variable constraints,”which restrict the identified uncertainty shocks based on correlations

with stock returns or the price of gold. There is also a conceptual difference in the reported

impulse responses insofar as the model we present is point-identified, while LMN’s model is

set-identified.

4 Model estimation

In this section we describe the Markov Chain Monte Carlo (MCMC) algorithm for the

estimation of the model. The model is a structural VAR with time-varying volatility in

which one of the regressors (the uncertainty measure) possibly impacts both the mean and

the variance of the others. This model nests as a special case the leverage model of Jacquier

et al. (2004).

One of the paper’s contributions is the derivation of the posterior distribution of the

model’s parameters and states. The conditional posterior distributions are nontrivial be-

cause, with respect to the standard stochastic volatility model, our model entails additional

layers of complication insofar as it includes VAR dynamics with contemporaneous feedback

effects and the stochastic volatility factor enters the conditional mean of the process. The

algorithm proposed here is different from the one in Carriero et al. (2018). In that paper

the main complication was the filtering of the unobservable common uncertainty measure,
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in the absence of simultaneity, while in this algorithm the main challenge is the sampling of

the model coeffi cients, because of the simultaneity.

Section 4.2 discusses the effi ciency and convergence of the algorithm. Section 4.3 and

Section 4.4 discuss, respectively, the priors used in the empirical application and the com-

putation of impulse response functions.

4.1 MCMC algorithm

We collect the model coeffi cients in three sets. First, θ1 groups all the coeffi cients of the yt

equation, plus the loadings: φ, A, Πy(L), Πm(L), βj , j = 1, . . . , n. Second, θ2 groups all

the coeffi cients of the uncertainty equation: δy(L), δm(L), ψ, σ2
ũ. Third, θ3 groups all the

coeffi cients of the latent volatility processes: αj , δj , σ2
η̃j
, j = 1, . . . , n. Both yt and mt are

observable, while ht is a vector of state variables. The vector θ contains θ1, θ2, and θ3. We

collect the hjt’s in the n× 1 vector process ht, and we define the following matrices:

Ht =


h1t 0 0

0
. . . 0

0 0 hnt

 ; M
(β)
t =


m
β1
t 0 0

0
. . . 0

0 0 m
βn
t

 ,
which implies (5) can be written as Σy,t = M

(β)
t Ht, where the superscript β indicates

dependence on the vector composed of βj for j = 1, . . . , n.15

Let h1:T denote the entire time series of the states hjt for j = 1, . . . , n and t = 1, . . . , T ,

and Y1:T denote the entire time series of the data Yt = (y′t,mt)
′. The joint density of data

and states is given by:

p(h1:T ,Y1:T |θ) =
T∏
t=1

m−1
t Πn

j=1m
−0.5βj
t h−1.5

jt pG(ε∗t )× pG(ũt)× pG(η̃t), (18)

where the shocks ε∗t , ũt, and η̃t are those in equations (1), (2), and (6). The joint density

in (18) is a non-standard distribution which reflects the novel characteristics of the model

proposed here: a multivariate model with stochastic volatility in mean, where the volatility

presents a factor structure and simultaneity with respect to the shocks to the dependent

variable. The derivation of (18) can be found in the paper’s appendix. Combining (18) with

a prior p(θ) yields the posterior density of coeffi cients and states

p(θ,h1:T |Y1:T ) ∝ p(h1:T ,Y1:T |θ)p(θ), (19)

which is not a known distribution but can be simulated via the following Gibbs sampler:
15The matrix of the idiosyncratic volatility states Ht should not be confused with the impact matrix H

appearing in equation (8), and the matrix of the common volatility states should not be confused with the

moment matrix in equation (12).
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1. h1:T |θ,Y1:T

2. θ|h1:T ,Y1:T , which is accomplished in three blocks:

2a θ1|θ2, θ3,h1:T ,Y1:T

2b θ2|θ1, θ3,h1:T ,Y1:T

2c θ3|θ1, θ2,h1:T ,Y1:T .

While steps (2b) and (2c) are straightforward, step (2a) is nontrivial due to the simultaneity

of our model. We now proceed to analyze these steps in more detail.

4.1.1 Drawing h1:T |θ,Y1:T

Under the assumption that the processes hjt are idiosyncratic volatilities with independent

shocks η̃it, the density h1:T |θ,Y1:T can be decomposed into the product Πn
j=1p(hj1:T |θ,Y1:T )

and drawn in blocks j = 1, . . . , n. Since the hjt follow a Markov process, a draw from

p(hj1:T |θ,Y1:T ) can be obtained via a sequence of draws from:

p(hjt|hjt−1, hjt+1, θ,Y1:T ) ∝ h−0.5
jt exp

{
−
e2
jt

2hjt

}
× h−1

jt exp

{
−(lnh2

jt − µjt)2

2s2
η̃j

}
, (20)

where ejt is the j-th element of the vector et = (M
(β)
t )−0.5A(yt−Πy(L)yt−1−Πm(L) lnmt−1−

φ lnmt), µjt = (δj(lnhjt−1 + lnhjt+1) + αj(1 − δj))/(δ2
j + 1), and s2

η̃j
= σ2

η̃j
/(δ2

j + 1). The

conditional moments µjt and s
2
η̃j
are slightly different in the first and last period of the

sample. Note that ejt is observable under the conditioning set of (20). The derivation of

the conditional posterior in (20) is detailed in the paper’s appendix. Using an independence

chain Metropolis step with the transition equation as proposal, i.e., q ∝ h−1
jt exp{−(lnh2

jt −
µjt)

2/2s2
η̃j
}, we can accept/reject with acceptance probability a = min (1, ι), where

ι =
√
hpresjt /hcandjt exp

{
ejt

2

2hpresjt

− ejt
2

2hcandjt

}
.

Finally, we initialize the states by drawing a set of initial conditions hj0, j = 1, . . . , n. We as-

sume a log-normal prior lnhj0 ∼ N(µhj0 , σ
2
hj0

), yielding a log-normal posterior (lnhj0| lnhjt+1, . . .) ∼

N(µ̄hj , σ̄
2
hj

), where µ̄hj = σ̄2
hj

(
µhj0
σ2hj0

+
(lnhj1−αj)/δj

σ2η̃j
/δ2j

)
and σ̄2

hj
=

σ2hj0
σ2η̃j

/δ2j

σ2hj0
+σ2η̃j

/δ2j
.
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4.1.2 Drawing θ|h1:T ,Y1:T

Consider again the likelihood and the posterior density given in (18) and (19). These

densities depend on ε∗t , ũt, and η̃jt, where:

ε∗t = (M
(β)
t )−0.5H−0.5

t A(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt)

ũt = lnmt − δy(L)yt−1 − δm(L) lnmt−1

−ψA(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt)

η̃jt = lnhjt − αj − δj lnhjt−1, j = 1, . . . , n.

Note that the coeffi cients of the second equation, θ2, only appear in the equation for ũt,

and the coeffi cients of the third equation, θ3, only appear in the equation for η̃jt. However,

the coeffi cients of the first equation θ1 appear in both equations for ε∗t and ũt. Substituting

these expressions into the posterior density (19) yields:

p(θ,h1:T |Y1:T ) ∝

Πn
j=1m

−0.5βj
t h−1.5

jt exp

{
−1

2

(
(yt −ΠXt − φ lnmt)

′A′(M
(β)
t )−1

×H−1
t A(yt −ΠXt − φ lnmt)

)}
p(θ1) (21a)

× 1√
σ2
ũ

exp

− 1

2σ2
ũ

(
lnmt − δy(L)yt−1 − δm(L) lnmt−1

−ψA(yt −ΠXt − φ lnmt)

)2
 p(θ2) (21b)

×Πn
j=1

1√
σ2
η̃i

exp

{
−(lnhjt − αj − δj lnhjt−1)2

2σ2
η̃i

}
p(θ3), (21c)

where we defined

ΠXt = Πy(L)yt−1 + Πm(L) lnmt−1,

and where we subsumed the term m−1
t into the proportionality.

As we noted above, the coeffi cients of the second equation, θ2, only appear in (21b),

and the coeffi cients of the third equation, θ3, only appear in (21c). This means that –

conditionally on θ1 (and on the states and data) – (21b) is the posterior kernel for θ2 and

(21c) is the posterior kernel for θ3.

In particular, since (21b) is a Normal-Inverse Gamma kernel, θ2|yt,mt, ht, θ1, θ3 can be

drawn via a Gibbs step based on using equation (2) as a linear regression model. Also,

note that p(θ2|yt,mt, ht, θ1, θ3) ∝ p(θ2|yt,mt, ht, θ1). Similarly, since (21c) is a (product

of) Normal-Inverse Gamma kernel(s), it follows that θ3|yt,mt, ht, θ1, θ2 can be drawn via

a Gibbs step based on using equation (6) as a linear regression model. Also note that

p(θ3|yt,mt, ht, θ1, θ2) ∝ p(θ3|ht).
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We are now left with the coeffi cients θ1. These coeffi cients are challenging because –

when ψ 6= 0– they appear in both (21a) and (21b). The posterior density p(θ1|yt,mt, ht, θ1, θ2)

is proportional to the product of the posterior kernels (21a) and (21b):

p(θ1|yt,mt, ht, θ2, θ3) ∝

Πn
j=1m

−0.5βj
t exp

{
−1

2

(
(yt −ΠXt − φ lnmt)

′A′(M
(β)
t )−1

×H−1
t A(yt −ΠXt − φ lnmt)

)}
p(θ1)

× exp

− 1

2σ2
ũ

(
lnmt − δy(L)yt−1 − δm(L) lnmt−1

−ψA(yt −ΠXt − φ lnmt)

)2
 ,

which is not a known distribution. Therefore, this calls for a Random Walk Metropolis step

with acceptance probability

a = min

(
1,
p(θcand1 |y1:T ,m1:T ,h1:T , θ2, θ3)

p(θpres1 |y1:T ,m1:T ,h1:T , θ2, θ3)

)
.

In order to improve the algorithm’s mixing, this step is blocked in several sub-steps involving

the coeffi cients in θ1. Specifically, we draw separately φ, A, Πy(L), Πm(L), βj , j = 1, . . . , n.

4.2 Effi ciency and convergence of the algorithm

We have verified the correctness, convergence, and mixing properties of the estimation al-

gorithm in our empirical applications. Detailed results are reported in section 1 of the

supplementary appendix. Specifically, Figure 1 of the supplementary appendix reports re-

sults from Geweke’s (2004) test of correctness of the posterior sampler. Figure 2 of the

supplementary appendix reports a summary set of diagnostics that all support convergence

and good mixing of the MCMC algorithm. The Monte Carlo experiments described in

Section 5 further test the algorithm using simulated data.

4.3 Priors

In the empirical application, we demean the variables and omit intercepts, to reduce the

dimensionality of the parameter space. The priors on φ, A, Πy(L), Πm(L) are flat. For

the loadings βj , j = 1, . . . , n, we elicit a Gaussian prior βj ∼ N(1, 102), which is very

diffuse (but still proper). For the equation for mt, we elicit an independent Gaussian prior

for each coeffi cient in the polynomials δy(L) and δm(L), with standard deviation 1 and

mean 0, with the only exception being the parameter associated with lnmt−1, whose prior

mean is set at 0.5. Following Jacquier et al. (2004), we assume a conjugate prior for ψ

and σ2
ũ, with ψ|σ2

ũ ∼ N(0, σ2
ũIn) and σ2

ũ ∼ IG
(
v0
2 = 2, S02 = 0.05

)
. For the equations

for ht, we elicit an independent Gaussian—Inverse Gamma prior, with δj ∼ N(0.99, 0.01),
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αj ∼ N(0, 0.01), and σ2
η̃j
∼ IG

(
v0
2 = 3, S02 = 0.05

)
, j = 1, . . . , n. To ensure stationarity

of the idiosyncratic volatility process, we also impose prior (and posterior) truncation for

the parameter δj using the rejection sampling approach of Cogley and Sargent (2005).

For the initial conditions of the states we use a Gaussian prior lnhj0 ∼ N(µh0 , σ
2
h0

) with

µh0 = ln 0.20 and σ2
h0

= 10. These priors are the same across all the presented empirical

applications. In the Monte Carlo exercise, to get an accurate read on bias in the coeffi cient

estimates, we use a slightly different, less informative prior for some coeffi cients, namely

δj ∼ N(0.99, 0.1), αj ∼ N(0, 0.1), and σ2
ũ ∼ IG

(
v0
2 = 2, S02 = 0.0025

)
.

4.4 Impulse responses

We will use the model to compute the impulse response functions (IRFs) to an uncertainty

shock of size
√
σ2
ũ. Following Hamilton (1994, page 10) we obtain responses by simulating

the model in the window t + 1, . . . , t + H under a baseline and a shocked scenario. The

baseline scenario is constructed as follows. Let i = 1, . . . , I be the index of the posterior

draws from the MCMC algorithm. We generate I paths of the system by starting from the

initial condition yt = lnmt = 0. In the baseline scenario, we set all of the shocks to 0 in

all periods (this can be thought of as the steady state). In the alternative scenario, we set

ũt+1 =
√
σ2
ũ, i.e., we give a shock of dimension

√
σ2
ũ to the system in the first period of the

window t+1, . . . , t+H. The IRFs for each draw are then computed as the difference between

the shocked and the baseline scenario:
{
yit+h,shocked − yit+h,baseline

}I
i=1
, h = 1, . . . ,H.

5 Illustrative example and Monte Carlo evaluation

Results based on the general model can be found in Section 6. This section contains an

illustrative application and a Monte Carlo evaluation based on a simpler bivariate version

of the model, with 1 lag and 1 variable:

yt = Πyyt−1 + Πm lnmt−1 + φ lnmt + ε̃t (23a)

lnmt = δyyt−1 + δm lnmt−1 + ψε̃t + ũt (23b)

lnht = α+ δ lnht−1 + η̃t. (23c)

Note that – since in this illustrative example there is only one variable in the macro

block and therefore only one volatility – we removed the assumption of factor structure

in the volatility. We did so by setting β = 0 in (5), which in turns implies σ2
y,t = ht and

simplifies (7) into (23c). This simpler specification of the model also facilitates Monte Carlo

experiments, whereas the more general specification with β 6= 0 would greatly complicate

the simulation of the model. Indeed, the more general model with β 6= 0 also involves
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simultaneity in the conditional variance of the process, and this fact in turn implies that a

closed form solution of the model to be used for simulation is not available.

In order to aid interpretation, it is helpful to write down the reduced form of the simul-

taneous equations (23a)-(23b) above:[
yt

lnmt

]
=

[
C11 C12

C21 C22

][
yt−1

lnmt−1

]
+

[
εt

ut

]
,

where C11, C12, C21, C22 are autoregressive coeffi cients and where the reduced-form errors

(ε′t u
′
t)
′ have variance

[
Σ11 Σ12

Σ12 Σ22

]
. The relation between the coeffi cients of the two repre-

sentations is:

C11 = Πy + φδy (24a)

C12 = Πm + φδm (24b)

C21 = δy (24c)

C22 = δm (24d)

Σ11 = φ2(ψ2ht + σ2
ũ) + ht + 2htφψ (24e)

Σ12 = φ(ψ2ht + σ2
ũ) + ψσ2

ε (24f)

Σ22 = ψ2ht + σ2
ũ. (24g)

In what follows, we will use the relations above to illustrate the issues possibly arising from

shutting down the feedback channel.

5.1 Estimation of the illustrative empirical example

We start with evaluating empirically the relationship between GDP growth and uncertainty

in the US. We define yt as the quarter-on-quarter GDP growth rate and lnmt as the JLN

measure of macro uncertainty, with quarterly data ranging from 1960Q3 to 2017Q2. Details

on the data will be provided in Section 6.1. The posterior means of the parameters (with

standard deviations in square brackets) are:

yt = 0.2454
[0.0705]︸ ︷︷ ︸

Πy

yt−1 + 2.1583
[2.4566]︸ ︷︷ ︸

Πm

lnmt−1
−4.7837

[2.6035]︸ ︷︷ ︸
φ

lnmt +
√
htε
∗
t , (25a)

lnmt = −0.0022
[0.0032]︸ ︷︷ ︸
δy

yt−1 + 0.9326
[0.0314]︸ ︷︷ ︸
δm

lnmt−1
−0.0088

[0.0052]︸ ︷︷ ︸
ψ

√
htε
∗
t + ũt; σ

2
ũ = 0.0012

[0.0001]
,(25b)

lnht = −0.0416
[0.0283]︸ ︷︷ ︸

α

+ 0.9576
[0.0276]︸ ︷︷ ︸

δ

lnht−1 + η̃t; σ
2
η̃ = 0.0346

[0.0221]
; lnh0 = 0.6620

[0.5490]
. (25c)
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Figure 1: Squared GDP growth rates, uncertainty measure, and reduced-form volatilities.

Shaded areas are NBER-dated recessions.

The impact effect of uncertainty on growth as measured by φ is negative, and also

the effect of growth on uncertainty as measured by ψ is negative, but the value of zero is

comfortably included in the 5-95% percentiles of the posterior of ψ.

Figure 1 reports the square of GDP growth, the JLN uncertainty measure, mt, and the

posterior mean of the latent state ht. The figure highlights the importance of the ht term

for capturing increased volatility during the recessionary periods of the ’70s and early ’80s,

and to capture the Great Moderation episode.
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Figure 2: Posterior distributions of φ and ψ in (25a) and (25b) when ψ is unrestricted (blue

solid line) and when ψ is restricted to 0 (red dashed line).

We now focus on what would happen if we assumed exogeneity of uncertainty, in the

sense of setting ψ = 0. The results become:

yt = 0.2365
[0.0667]︸ ︷︷ ︸

Πy

yt−1 + 5.0988
[1.4062]︸ ︷︷ ︸

Πm

lnmt−1
−8.0868

[1.4381]︸ ︷︷ ︸
φ

lnmt +
√
htε
∗
t ,

lnmt = −0.0020
[0.0033]︸ ︷︷ ︸
δy

yt−1 + 0.9538
[0.0307]︸ ︷︷ ︸
δm

lnmt−1 + 0︸︷︷︸
ψ

√
htε
∗
t + ũt; σ

2
ũ = 0.0013

[0.0001]

lnht = −0.0426
[0.0286]︸ ︷︷ ︸

α

+ 0.9555
[0.0287]︸ ︷︷ ︸

δ

lnht−1 + η̃t; σ
2
η̃ = 0.0299

[0.0181]
; lnh0 = 0.6393

[0.5217]
.

Compared to the case with unrestricted ψ, the posterior of φ shifts toward more negative

values: the posterior mean goes from −4.7837 to −8.0868 (a decrease of 3.3031). Figure

2 shows the entire posterior distributions of φ when ψ is either unrestricted or set to zero.

Setting ψ = 0 leads to an over-estimate of the negative impact of uncertainty on growth.

This happens because, in the more general model with ψ 6= 0, following an uncertainty

shock there is a decrease in growth, and this in turn increases uncertainty, which further

decreases growth, increases uncertainty, and so on. If we shut down the feedback effect of

growth on uncertainty by setting ψ = 0, the overall impact effect of uncertainty on growth,

as measured by φ, must increase (in absolute value).

Equation (24b) in this example offers additional insights. Indeed, since the reduced-

form coeffi cient C21 cannot change, and lnmt and lnmt−1 are highly correlated (δm is
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about 0.93), to compensate for the distortion in φ, the parameter Πm increases by roughly

the same amount of the decrease in φ. Indeed, the mean of the posterior of Πm becomes

much larger, increasing from 2.1583 to 5.0988, an increase of 2.9405 which almost entirely

offsets the 3.3031 decrease in φ. This shows that the sum φ + Πm does not change much,

and that under the restriction ψ = 0 the model confounds the contemporaneous (φ) and the

lagged effect (Πm) of uncertainty on growth.

Moreover, consider equation (24a). Since the product φδy is very small, as δy is very

low relative to φ, the coeffi cient Πy is virtually unaffected by the exclusion of the feedback

channel. Finally, there are virtually no effects on the parameters of the equation for lnmt

when setting ψ = 0. This is not attributable to the insignificance of ψ but rather is a

consequence of the fact that ε∗t is uncorrelated with the other regressors, so that its omission

does not introduce a distortion.

While Figure 2 makes clear that there is an effect to setting ψ = 0, it also shows that the

posterior distribution of this parameter comfortably contains the value 0 within the bulk

of its probability mass. We can formally compare alternative specifications by using Bayes

factors. The unrestricted (i.e., ψ 6= 0) and the restricted (ψ = 0) specifications have (log)

marginal likelihoods of −106.7167 and −118.5822, respectively. In logs, this gives a Bayes

factor of 11.86, in strong support of the unrestricted model.

5.2 A Monte Carlo evaluation

This section describes a range of Monte Carlo (MC) experiments, with the aim of illustrating

the main features of the model, checking the estimation algorithm, and assessing the effects

of some sources of misspecification. We base the data generating process (DGP) on the

estimated model (25a)-(25c). All the coeffi cients are set as in the empirical estimates of

equation (25). With this DGP, we simulate 500 time series for yt, mt, and ht with t =

1, . . . , 250. We then estimate the model using 60,000 draws for each set of time series,

storing at each replication the posterior mean of each parameter, reported in charts below.

This provides the empirical distribution of the point estimates across the MC replications.

The prior distributions are overlaid on the results in all of the charts provided.

We have examined a wide range of Monte Carlo designs, considering the following issues:

1. Designs 1-3: What are the effects of setting either ψ = 0 or φ = 0 in the model?

2. Design 4: What is the effect of the heteroskedasticity of the system going to 0?

3. Design 5: What is the role of the Gaussianity assumption for the shocks ε∗t ?
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The complete set of results is available in section 7 of the supplementary appendix. In

what follows, we only present a selection of the results focusing only on three key coeffi cients:

Πm, ψ, φ. Results are in Figure 3. In the figure, the rows of panels correspond to alternative

Monte Carlo designs, and the columns of panels provide the results for each coeffi cient.

Specifically, the results consist of the empirical distribution of the point estimates across the

MC replications, under two alternative scenarios (identified by a blue solid line and a red

dashed line).

Omitted and redundant feedback effects We start with Design 1, in which the DGP

features ψ 6= 0 and the researcher either does or does not impose the restriction ψ = 0 in

estimation. The results for this MC design are shown in the first line of panels in Figure

3. When the researcher chooses to leave the coeffi cient ψ unrestricted, the estimated model

does not suffer from misspecification, and the resulting posteriors are entirely in line with the

true DGP. However, if the researcher imposes the restriction ψ = 0, the resulting posteriors

are markedly distorted and fail to recover the true values of the coeffi cients in the DGP. It is

interesting to note that such distortions resemble the pattern we have found in the empirical

application. Specifically, the posterior mean of φ moves to the left, while that of Πm shifts

to the right, so that the posterior mean of the sum φ+Πm does not move much. As we have

already emphasized, this is because the reduced-form parameter C21 = Πm + φδm cannot

change, and – since δm is equal to 0.93 – the parameter Πm must increase by roughly the

same amount of the decrease in φ.

Next, we consider Design 2, in which we use the coeffi cient values of the estimated

model (25a)-(25c) as DGP, with the relevant exception of setting ψ = 0. This means

that there is no contemporaneous feedback effect of macro variables on uncertainty; that

is, uncertainty is exogenous. As before, the researcher can either impose the restriction

or not in the estimated model. This case resembles the case of redundant variables in the

estimated model, which typically leads to ineffi cient – but yet unbiased – estimators. This

is precisely what happens, as illustrated in the second row of Figure 3. In this case, both

models recover the correct values for the coeffi cients, but the model imposing the correct

restriction ψ = 0 attains more precise estimates.

Design 3 considers the effects of erroneously imposing the restriction φ = 0, i.e., no

contemporaneous effects of uncertainty on yt, while in the DGP such a restriction does

not hold. We use the coeffi cient values of the estimated model (25a)-(25c) for the DGP,

without any modification being required, since φ is already high and significant in these

estimates. Results from this design are presented in the third row of Figure 3. As expected,

imposing the restriction φ = 0 distorts the results. In particular, the contemporaneous effect
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Figure 3: Excerpts from Monte Carlo experiments, designs 1-5. Empirical distributions of

posterior means across Monte Carlo replications.

of uncertainty on output (as measured by φ) is underestimated (set at φ = 0), and since

the reduced-form parameter C21 = Πm + φδm cannot change, the lagged effect Πm gets

correspondingly over-estimated. Moreover, the distortion in φ implies a distortion in ε∗t (it

no longer features zero mean), and therefore, ψ gets overestimated (in absolute value).

In light of the three designs described above, the identification problem faced by the stan-

dard approach can be rephrased as follows. In the reduced form we have the parameter C21 =

Πm + φδm, which is uniquely identified in the likelihood. Recursive identification schemes

impose either φ = 0 or ψ = 0, which both amount to a potential omitted variable problem.

We have that:

• If ψ = 0 (uncertainty ordered first), then the estimated φ will be more negative than
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it is in the DGP, and we have an overestimate of Πm. In this case the identification

scheme attributes too much of the impact variation to uncertainty and too little to

lagged uncertainty.

• If φ = 0 (uncertainty ordered last), then the estimated φ will be less negative than it

is in the DGP, and we have an underestimate of Πm. In this case the identification

scheme attributes too little of impact variation to uncertainty and too much to lagged

uncertainty.

The approach we propose in this paper solves these issues, since it allows estimating a

model that does not put any restrictions on either ψ or φ. The results of the Monte Carlo

evaluation highlight the importance of properly modeling the endogeneity of uncertainty,

and support the interpretation of the empirical findings about the relationship between GDP

growth and macro uncertainty. In addition, there is no tendency to spuriously estimate a

significant contemporaneous dependence of uncertainty on macro conditions when none

exists in the DGP.

Effects of shutting down the heteroskedasticity As we have discussed, identification

in this model comes from the heteroskedasticity, and hence it is natural to ask what happens

as heteroskedasticity vanishes. Design 4 answers this question, by letting the variance σ2
η̃

be close to 0. In this case σ2
y,t will no longer be a random state variable, but rather will

converge to a fixed σ2
y, and this will make the model converge to a standard homoskedastic

VAR. We simulate the model using either σ2
η̃ = 0.0346 or σ2

η̃ = 0.000346 (the remaining

coeffi cients being as in Design 1). Then, we estimate the model and compare the results.

This is illustrated in the fourth row of Figure 3. In this case, as the idiosyncratic volatility’s

variance becomes very small, the model estimates generally differ widely from the true values.

This highlights that identification in our model rests on the time-varying volatility.16 In the

empirical application, we will provide overwhelming evidence of its existence.

Effects of mis-specifying the distributional assumption on ε∗t Design 5 looks at

what happens if the distribution of ε∗t is misspecified. To do so, we simulate artificial

data using the estimated model (25), but we modify the shock to (25a) so that it has a

t-distribution with 3 degrees of freedom, as opposed to a Gaussian distribution. Then,

we estimate the model and compare the results. This is illustrated in the last row of

Figure 3. The figure shows that this type of misspecification does have an impact on the

16Lewis (2020) provides a framework for inference in models identified via heteroskedasticity in the presence

of weak identification.
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bias of the estimates. This effect is limited in the case at hand (which is calibrated on

our empirical application) but in general it would lead to inconsistency in the posterior

in large samples. Sensitivity to this assumption is a particular fragility of the stochastic

volatility framework, as the same would not happen in either standard SVARs identified by

short or run-long restrictions, or under long-span regime switching specifications of time-

varying volatility. The most natural way to address this issue would be to eliminate the

possible misspecification by modeling the shocks as a t-student, which is a feasible but

computationally demanding extension of our framework.17 For our application presented

below, normality tests performed on the posterior means of the components of ε∗t comfortably

support normality for both our specifications and for both datasets. Results can be found

in the supplementary appendix’s section 6.

6 The economic effects of (endogenous) uncertainty

We now study the relationship between macroeconomic uncertainty and economic variables.

We do so using both quarterly and monthly data for the US. The data are described in

Section 6.1. Section 6.2 discusses the choice of the specification. Section 6.3 provides the

results.

6.1 Data

6.1.1 Uncertainty measures

Assessing the relationship between uncertainty and economic variables requires choosing a

concept and measure of uncertainty. The uncertainty literature features a range of both

concepts and measures, reflecting the broad definition in the opening paragraph of Bloom

(2014, p.153): “Uncertainty is an amorphous concept. It reflects uncertainty in the minds of

consumers, managers, and policymakers about possible futures. It is also a broad concept,

including uncertainty over the path of macro phenomena like GDP growth, micro phenomena

like the growth rate of firms, and non-economic events like war and climate change.”

Bloom (2014) goes on to indicate that uncertainty cannot be perfectly measured but

can be proxied by a range of measures. One very common proxy is the volatility of stock

prices. As noted in Bloom (2009, p.627), stock market volatility “...is strongly linked to

other measures of productivity and demand uncertainty.” Sources such as Bloom (2014)

17A few studies – e.g., Chiu et al. 2017, Clark and Ravazzolo 2015, and Curdia et al. 2015 – have

considered models with both stochastic volatility and fat-tails in the conditional innovations. The evidence

from this literature seems mixed, with some but not all finding fat tails to be helpful to model fit and

forecasting.
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discuss some reasons why; as a matter of timeliness, asset prices such as stock prices react

quickly to news on the economy, including news relating to economic uncertainty. Other

examples of studies using stock volatility-based measures include Basu and Bundick (2017)

and Caggiano et al. (2014). Baker et al. (2016) develop an alternative measure of economic

policy uncertainty, based on newspaper coverage.

Jurado et al. (2015, p.1177) take a more specific stand on the concept and measure of

uncertainty: “At a general level, uncertainty is typically defined as the conditional volatility

of a disturbance that is unforecastable from the perspective of economic agents.”JLN argue

that, for various reasons, common proxies such as stock market volatility need not be tightly

linked to such a concept.18 JLN go on to develop measures of macroeconomic and financial

uncertainty based on forecast error variances of large sets of macro indicators and asset

returns. Conceptually similar measures have been developed in studies such as Carriero et

al. (2018) and Jo and Sekkel (2019).

In this paper we focus on the measure of macroeconomic uncertainty put forward by

JLN. In estimates omitted in the interest of brevity, we have verified the robustness of our

VAR-based results to instead using the macroeconomic uncertainty measure of Carriero et al.

(2018). At the monthly frequency, the correlation of the JLN measure of macro uncertainty

with the Carriero et al. estimate is about 0.8.19

6.1.2 Other data

For the macroeconomic block of the system, given by equation (1), we considered VARs

at both quarterly and monthly frequency. The variables included in the quarterly model

are (with acronym and transformation in parenthesis): GDP (GDP, 100*∆ ln), consump-

tion (CONS, 100*∆ ln), private investment (INVES, 100*∆ ln), hours (HOURS, 100*∆ ln),

compensation of employees (COMPE, 100*∆ ln), GDP deflator (PRICE, 100*∆ ln), and

the federal funds rate (FFR, ∆). The variables included in the monthly model are (with

acronym and transformation in parenthesis): Total nonfarm payroll employment (PAYEM,

100*∆ ln), industrial production (IP, 100*∆ ln), weekly hours: goods-producing (HOURS,

18Berger et al. (2020) present evidence that it is realized stock market volatility, as opposed to uncertainty

about the future, that leads to economic fluctuations, and develop a structural model to account for the

finding.
19 In unreported results, we also estimated VARs with a news index-based measure of policy uncertainty

(using data back to 1960, with the uncertainty measure provided by Professor Bloom from earlier versions of

Baker et al. 2016). In these estimates, shocks to uncertainty have economic effects similar to those reported

for the paper’s baseline measure. News-based policy uncertainty appears to be endogenous, responding

contemporaneously to the business cycle. We interpret that pattern as consistent with the newspaper story

basis of the uncertainty measure as being a fast-moving variable, like financial indicators.
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100*∆ ln), real consumer spending (SPEND, 100*∆ ln), orders (ORDER, index/100), earn-

ings (EARNI, 100*∆ ln), PCE price index (PCEPI, 100*∆ ln), the federal funds rate (FFR,

∆), and the S&P 500 (S&P, ∆ ln).

This specification of monthly variables is very similar to those considered in JLN and

Bloom (2009), and contains many of the same variables in the VAR of Caldara et al. (2016).20

We use four lags (these are suffi cient to provide white noise residuals in both the monthly

and quarterly applications) and estimate over the sample 1961m7 to 2016m11, for a total

of T = 659 observations. The set of quarterly variables aligns with those used in structural

models such as those of Smets and Wouters (2007). The sample period covers 1960Q3 to

2017Q2. All variables are demeaned prior to estimation to reduce the computational burden.

We obtained the macroeconomic data of the monthly model from the FRED-MD database

developed in McCracken and Ng (2016) and made available on the website of the Federal

Reserve Bank of St. Louis. We took the macro data of the quarterly model from the FAME

database of the Federal Reserve Board of Governors.

Although the model is estimated with data transformed as indicated above, for compa-

rability to previous studies, the impulse responses are cumulated and transformed back to

the units typical in the literature. Accordingly, the units of the reported impulse responses

are percentage point changes (based on 100 times log levels for variables in logs or rates

for variables not in log terms). The fact that the model is estimated using some variables

differenced for stationarity (e.g., GDP, consumption, and investment) implies that, for some

of these variables, the long-run effects of transitory shocks do not die out.

6.2 Volatilities

As a preliminary step, we have estimated some unrestricted time-varying volatilities for the

variables of the monthly and quarterly data sets. Specifically, we have used the Bayesian

VAR with stochastic volatility described in Carriero et al. (2019). The data show over-

whelming evidence of variation in the conditional volatilities. Figure 4 shows the posterior

distributions of the time-varying volatilities of these variables.

Moreover, as was the case for the larger data set used in Carriero et al. (2019), there

is strong evidence of commonality in the volatilities of our monthly and quarterly variable

sets. In particular, the first principal component computed over the resulting estimated

volatilities explains 61.47% of the total variance in the monthly dataset.21 This first principal

component is highly correlated with the macroeconomic uncertainty measure of JLN, with

20We obtained very similar results with a model augmented to include a credit spread.
21 In quarterly data, the first principal component computed over the estimated volatilities explains 81.62%

of the total variance, and its correlation with the macroeconomic uncertainty measure of JLN is 66.16%.
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Figure 4: Reduced-form volatilities from an unrestricted Bayesian VAR. Top rows are quar-

terly results, bottom rows are monthly results.

a correlation of 71.75% in the monthly dataset.

In light of this evidence of commonality in volatilities, in the remainder of the paper

we will report results for the volatility specification of equation (5), which features a factor

structure with non-zero loadings β. The loadings βj , j = 1, . . . , n, measure the proportion

with which the common factor impacts the volatility of variable j. The posterior distribu-

tions of the loadings for both datasets are displayed in Figure 5. The figure shows that these

coeffi cients generally vary a lot across different variables. They are also generally different

from 1.

It is worth noting that all of the results we present below are substantially the same

under an alternative specification, closer to the popular VAR specification of Cogley and

Sargent (2005) and Primiceri (2005), in which the volatilities σ2
jt do not depend on a common

uncertainty factor, but rather they are modeled as idiosyncratic, mutually independent, state

variables (this is achieved by setting βj = 0, j = 1, . . . , n). This is largely due to the fact

that the specification of the conditional variance part of the model mainly enhances the
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Figure 5: Posterior distributions of the β loadings in (7).

effi ciency of the estimates of the conditional mean, but has only a limited effect on the point

estimates.

6.3 Macroeconomic uncertainty shocks

Figure 6 shows the posterior distributions of the standard effect coeffi cients φ and the

feedback coeffi cients ψ for the monthly and quarterly VARs.

Focusing first on the standard effect coeffi cients φ, which are on the left-hand side panel

of Figure 6, they appear to be largely in line with previous findings about the effects of

uncertainty on macroeconomic variables. In particular uncertainty has a large depressive

effect on hours, employment, industrial production, consumer spending, and hours. These

depressive effects also appear in the quarterly dataset on investment, output, consumption,

and hours. A shock to uncertainty also leads to a loosening of the federal funds rate, and an

increase in inflation as measured by wages and the PCE price index. These results confirm

those of several other studies, such as Baker et al. (2016), Bloom (2009), Carriero et al.
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Figure 6: Posterior distributions of the φ and ψ coeffi cients in (1) and (2). VARs with macro

(JLN) uncertainty.

(2018), Gilchrist et al. (2014), Jo and Sekkel (2019), and Jurado et al. (2015). They are also

in line with the international evidence in Carriero et al. (2020).

Turning our focus to the feedback coeffi cients ψ, which are on the right-hand side of

Figure 6, there are some variables for which these coeffi cients appear significantly different

from 0. Specifically, these variables are consumption, investment, industrial production,

hours, and the federal funds rate. The sign of the posterior means is in line with what

macroeconomic reasoning would suggest, for example variables such as hours and industrial

production tend to reduce uncertainty, whereas the federal funds rate increases macroeco-

nomic uncertainty.

As mentioned in Section 3.3, the φ and ψ coeffi cients depicted in Figure 6 are conditional

on the particular ordering of the variables within the macro block. In practice, we have

experimented with several alternative orderings in both the monthly and the quarterly

model, finding a rather limited impact on the estimated φ and ψ coeffi cients. Section 3 in
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Figure 7: Impulse responses (posterior medians) to a macro uncertainty shock with ψ = 0

(red dotted line) and ψ 6= 0 (blue solid line). Top rows are quarterly results, bottom rows

are monthly results.

the supplementary appendix provides these results.

The coeffi cients in Figure 6 represent the impact effects on the system. In order to have

a complete picture, we now investigate how the differences in the impact effect translate

into differences in the dynamics of the system. To do so, we consider the consequences

that shutting down the feedback coeffi cients ψ (which capture the immediate response of

uncertainty to economic conditions) has on the coeffi cients φ (which capture the immediate

response of economic conditions to uncertainty) and on the impulse responses. This amounts

to ordering uncertainty first in a VAR identified through a recursive Cholesky scheme. Figure

7 shows the posterior medians of the impulse responses to a macroeconomic uncertainty

shock. In the figure, the unrestricted model is denoted by the solid blue lines, while the

model with the feedback effects restricted to zero (ψ = 0) is denoted by red dashed lines.

In the top panels of Figure 7, which are based on the quarterly data, it is clear that

the differences in the impact effects translate into a different dynamic adjustment after the
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Figure 8: Impulse responses (posterior medians) to a macro uncertainty shock with φ = 0

(red dotted line) and φ 6= 0 (blue solid line). Top rows are quarterly results, bottom rows

are monthly results.

shock. Instead, the differences in the bottom panels of Figure 7, which are based on the

monthly model, are barely noticeable.22

It is interesting to also consider the case of shutting down the standard uncertainty

effect (the contemporaneous effect of uncertainty on economic conditions), i.e., to set φ = 0.

This amounts to ordering uncertainty last in a VAR identified through a recursive Cholesky

scheme. Since – as seen in Figure 6 – the coeffi cients φ are broadly different from zero,

and considering also the results we obtained with the MC design in which the researcher

22This is not due to a scaling effect, the fact that the charts plot the time series evolution of the median,

or that they might conceal differences in higher moments, rather than the posterior median. In order to

check that this is not the case, we have examined (see section 4 of the supplementary appendix) the entire

posterior distribution of the impulse responses at some selected horizons. These distributions show that,

with monthly data, setting ψ = 0 has only a slight effect on impact and in the very short run. After that, the

differences between the two models quickly die out, and the distributions of the impulse responses become

virtually identical.
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Figure 9: Impulse responses (posterior medians) for different estimation samples.

erroneously imposes φ = 0, we expect shutting down this channel to noticeably affect the

impulse responses.

Figure 8 shows the posterior medians of the impulse responses to a macroeconomic

uncertainty shock (section 4 of the supplementary appendix displays the entire posterior

distribution of the impulse responses at some selected horizons). Clearly, shutting down

the standard channel also produces somewhat different impulse responses in the monthly

model, and the differences do not completely die out even at the 36-month- (or 12-quarter-)

ahead horizons. These results, combined with the Monte Carlo evidence we discussed above

(in particular, the design in which the researcher erroneously imposes φ = 0), imply that

setting φ = 0 – or, equivalently, ordering macroeconomic uncertainty last in a recursive

VAR – could lead to distorted estimation of the effects of macro uncertainty shocks on

macroeconomic variables, and a confusion between its contemporaneous and lagged effects.

Finally, in order to assess possible parameter instabilities, we estimated the model over

different subsamples and produced impulse responses for each one. As indicated above,

the impulse responses reflect most of the model’s parameters and thereby provide a simple
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check of stability. Figure 9 shows the impulse responses computed using the alternative

sub-samples ending in 1986, 1996, and 2006, and the full sample estimates based on data

up to the end of the sample. As is clear from the Figure, the dynamic response of almost

all variables is qualitatively similar in the alternative subsamples. The largest quantitative

differences arise when using the sample ending in 1986, i.e. a sample that does not include

the interest rate targeting regime and the Great Moderation.

7 Conclusions

Uncertainty is a key variable to understanding economic dynamics, attracting growing in-

terest following the seminal work of Bloom (2009) and the Great Recession of 2007-2009.

Several theoretical and empirical papers are by now available on the effects of uncertainty.

A general finding from the empirical studies is that uncertainty leads to a deterioration in

economic conditions. However, this outcome could be at least partly due to an endogeneity

problem. If economic conditions have a contemporaneous effect on uncertainty, ruling it out

a priori could result in overestimation of the effects of uncertainty.

In this paper we have developed an econometric model where current and past values

of uncertainty affect the current levels of economic variables, and uncertainty is in turn

affected by them also contemporaneously. Our model includes stochastic volatility, with

time-varying conditional variances of the variables that can be driven by an uncertainty

measure plus an idiosyncratic component, or just a stochastic idiosyncratic component. As

we show, identification of the model follows from the general results in Lewis (2021) on

identification in VARs with time-varying volatility. We derive and provide the relevant

conditional posteriors for the states and coeffi cients of the model, which can be used to

estimate the model with a Gibbs sampler.

While the focus of this paper is on uncertainty shocks, the model can be used for any

situation in which the researcher wishes to model some of the variables in a vector autore-

gression as endogenous and there is evidence of time-varying volatility.

Our empirical results point to the conclusion that there is some evidence for the en-

dogeneity of uncertainty. Specifically, we found that some ψ coeffi cients are nonzero for

variables such as industrial production, the federal funds rate, and consumption. We also

found that the overall impact of the feedback effect on the system dynamics is visible in the

quarterly model while it is rather small in the monthly model. These findings imply that,

to reliably assess macroeconomic uncertainty and its effect, it is necessary to depart from a

simple recursive ordering and use a more sophisticated approach to identification, such as

the one we develop.
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Our modeling approach does not put any restrictions on either ψ or φ. Still, if a re-

searcher wanted to use a recursive VAR, our results provide two important suggestions for

identification. First, when using monthly data, ordering macroeconomic uncertainty first

is likely to be harmless. Second, ordering uncertainty last is likely to produce misleading

results.
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Appendix

A. Derivation of the moment matrix

The first term of the matrix appearing in (12) is:
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ũ]− E[σ2
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The second term of the M matrix appearing in (12) is:
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 .
B. Derivation of the joint density of data and states

The joint density of the data and the states p(yt,mt, ht|θ) can be obtained via the change
of variable theorem. We start by re-writing the shocks as follows:

ε∗t = Σ−0.5
y,t A(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt),

= (M
(β)
t )−0.5H−0.5

t A(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt), (B.1)

ũt = lnmt − δy(L)yt−1 − δm(L) lnmt−1 − ψΣ0.5
y,t ε
∗
t ,

= lnmt − δy(L)yt−1 − δm(L) lnmt−1

−ψA(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt) (B.2)

η̃jt = lnhjt − αj − δj lnhjt−1, j = 1, . . . , n. (B.3)

Collect these shocks in the vector:

rt =


ε∗t

u∗t

η̃t

 ∼ N



0

0

0

 ,

In 0 0

0 σ2
ũ 0

0 0 Ση̃


 ,

where η̃t = (η̃1t, . . . , η̃nt)
′ and Ση̃ is a diagonal matrix with elements σ2

η̃j
, j = 1, . . . , n. The

vector rt is a vector of independent Gaussian shocks. The Jacobian of the system (B.1)-(B.3)

is

JNt =


∂ε∗t /∂yt ∂ε∗t /∂mt ∂ε∗t /∂ht

∂ũt/∂yt ∂ũt/∂mt ∂ũt/∂ht

∂η̃t/∂yt ∂η̃t/∂mt ∂η̃t/∂ht

 ,
and can be used in a change of variable to get:

p(yt,mt, ht|θ) = |JNt| × pG(ε∗t , ũt, η̃t).
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Since ∂η̃t/∂yt = ∂η̃t/∂mt = 0 and ∂η̃t/∂ht = H−1
t , the determinant |JNt| simplifies to:

|JNt| = |H−1
t |
∣∣∣∣∣
(
∂ε∗t /∂yt ∂ε∗t /∂mt

∂ũt/∂yt ∂ũt/∂mt

)∣∣∣∣∣
= |H−1

t ||∂ε∗t /∂yt||∂ũt/∂mt − ∂ũt/∂yt · (∂ε∗t /∂yt)−1 · ∂ε∗t /∂mt|. (B.4)

The derivatives are:

∂ε∗t /∂yt = (M
(β)
t )−0.5H−0.5

t A, ∂ε∗t /∂mt = −(M
(β)
t )−0.5H−0.5

t Aφm−1
t ,

∂ũt/∂yt = ψA, ∂ũt/∂mt = m−1
t − ψAφm−1

t ,

which implies that

∂ũt/∂yt · (∂ε∗t /∂yt)−1 · ∂ε∗t /∂mt = −ψAφm−1
t ,

and therefore the third determinant on the right hand side of (B.4) simplifies to |m−1
t |.

Hence, the determinant (B.4) is:

|JNt| = |H−1
t ||(M

(β)
t )−0.5H−0.5

t A||m−1
t |

= m−1
t Πn

j=1m
−0.5βj
t h−1.5

jt ,

and the density in (18) is:

p(yt,mt, ht|θ) = m−1
t Πn

j=1m
−0.5βj
t h−1.5

jt pG(ε∗t )︸ ︷︷ ︸
eq. (1)

× pG(ũt)︸ ︷︷ ︸
eq. (2)

× pG(η̃t)︸ ︷︷ ︸
eq. (6)

,

where the shocks ε∗t , ũt, and η̃t are those in equations (1), (2), and (6).

C. Derivation of the conditional posterior of the states

In this subsection we derive the expression for the conditional posterior of the states. To do

so we consider the data density (18) for the generic idiosyncratic volatility of variable j at

time t (i.e. hjt) and recognize that i) since mutual independence of the shocks ensures that

pG(ε∗t ) = Πn
j=1pG(ε∗jt) and pG(η̃t) = Πn

j=1pG(η̃jt), all the terms not involving variable j can

be subsumed in the integrating constant; ii) due to the Markov property featured by hjt,

all the terms involving time periods beyond t− 1 or t+ 1 can be ignored. This gives:

p(hjt|hjt−1, hjt+1, θ,Y1:T ) ∝ h−1.5
jt exp

(
−ε∗2jt − ε∗2jt+1

2

)
(C.1a)

× exp

(−ũ2
t − ũ2

t+1

2σ2
ũ

)
(C.1b)

× exp

(
−η̃2

jt − η̃2
jt+1

2σ2
η̃

)
, (C.1c)
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where we also subsumed m−1
t Πn

j=1m
−0.5βj
t and all of the terms h−1.5

it with i 6= j in the

integrating constant. Define:

et = H0.5
t ε∗t = (M

(β)
t )−0.5A(yt −Πy(L)yt−1 −Πm(L) lnmt−1 − φ lnmt),

where we used H0.5
t (M

(β)
t )−0.5H−0.5

t = (M
(β)
t )−0.5, which holds true since both H0.5

t and

M
(β)
t are diagonal. Note that et is observable conditioning on mt and yt (and the coeffi cients

θ). Using ε∗jt = h−0.5
jt ejt, the term exp(−ε∗2jt /2) in (C.1a) can be written as:

exp

(
−
ε∗2jt
2

)
= exp

(
−
e2
jt

2hjt

)
. (C.2)

A similar expression holds for the term exp(−ε∗2jt+1/2) in (C.1a) but this term is redundant

as it depends on hjt+1, not hjt. The shocks

ut = lnmt − δy(L)yt−1 − δm(L) lnmt−1

are observable when conditioning on mt and yt (and the coeffi cients θ). Moreover,

ũt = ut − ψε̃t = ut − ψ(M
(β)
t )0.5H0.5

t ε∗t = ut − ψ(M
(β)
t )0.5et

are not only observable, but they do not depend on hjt, which implies that the entire term

(C.1b) is redundant. Finally, by completing the squares, the term exp((−η̃2
jt − η̃2

jt+1)/2σ2
η̃)

in (C.1c) can be written as:

exp

(
−η̃2

jt − η̃2
jt+1

2σ2
η̃

)
∝ exp

(
−(lnh2

jt − µjt)2

2s2
η̃j

)
, (C.3)

where µjt = (δj(lnhjt−1 + lnhjt+1) + αj(1− δj))/(δ2
j + 1) and s2

η̃j
= σ2

η̃j
/(δ2

j + 1).23

Using (C.2) and (C.3), the density (C.1) can be written as:

p(hjt|hjt−1, hjt+1, θ,Y1:T ) ∝ h−0.5
jt exp

(
−
e2
jt

2hjt

)
× h−1

jt exp

(
−(lnh2

jt − µjt)2

2s2
η̃j

)
.

This is the conditional posterior of the states appearing in equation (20).
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This supplementary appendix provides additional results and robustness checks. These
results refer to two different specifications of the volatility process for the model. We use
“specification 1”to refer to a model restricted to make all factor loadings βj equal 0 and
“specification 2”to refer to the model used in the paper, in which the factor loadings are
not restricted to 0.

1 Algorithm diagnostics

In this section we evaluate the correctness, convergence, and mixing properties of the
MCMC sampler. Figure 1 reports the quantile-quantile plots of Geweke’s (2004) test of
correctness of the posterior sampler, computed using the univariate version of the model. In
particular, the plots compare the quantiles of simulated draws of a few observations of the
data and states (yt, lnmt, lnht) and the model’s parameters, for draws from the marginal-
conditional simulator and from the successive-conditional simulator.1 The quantiles from
the two simulators line up closely. Accordingly, the Geweke diagnostic indicates correctness
of the sampler.

Figure 2 reports the potential scale reduction factors and ineffi ciency factors for all of
the coeffi cients in the model for the monthly dataset (results are very similar for all the
other specifications). Results are organized in groups. Results for the coeffi cients in the yt
equations (θ1) are reported in the plots in the first column on the left-hand side, results
for the coeffi cients in the uncertainty equation (θ2) are reported in the plots in the central
column, and results for the coeffi cients of the idiosyncratic volatilities processes (θ3) are
reported in the plots in the last column, on the right-hand side.

1Our choice of statistics and quantile-quantile patterns is patterned on the implementation of the Geweke
(2004) sampler test in the online appendix of Del Negro and Primiceri (2015).
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Figure 1: Geweke (2004) test of correctness of the posterior sampler, q-q plots.

2 Results from Specification 1 (β = 0)

This section contains the entire set of results for Specification1. Results are organised as
follows:

• Figure 3: model with β = 0, posteriors of φ and ψ

• Figure 4: IRFs of the model with β = 0, cases ψ = 0 vs ψ 6= 0

• Figure 5: IRFs of the model with β = 0, cases φ = 0 vs φ 6= 0

• Figure 6: Comparison of models with and without loadings.
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Figure 2: Potential scale reduction factors and ineffi ciency factors for the simulated draws
of the model coeffi cients.
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Figure 3: Model with β = 0
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Figure 4: Impulse responses to an uncertainty shock with ψ = 0 and ψ 6= 0. Rows 1 and
2: quarterly dataset. Rows 3 and 4: monthly dataset. Model without factor structure in
the volatilities (β = 0).
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Figure 5: Impulse responses to an uncertainty shock with φ = 0 and φ 6= 0. Rows 1 and 2:
quarterly dataset. Rows 3 and 4: monthly dataset. Model without factor structure in the
volatilities (β = 0).
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Figure 6: Comparison of models with and without loadings. These are models with φ and
ψ both different from 0.
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3 Robustness to re-orderings within the macro block

In this section we evaluate the robustness of our results to alternative orderings within
the macro block. This does not imply that there is a different ordering between the macro
block and the uncertainty measure block: these two blocks continue to be simultaneous
as in the baseline model. We consider the inverted ordering for both the quarterly and
monthly model. For the monthly model, we also consider (i) a model in which the S&P
500 is omitted from the cross section of variables, (ii) the ordering of Bloom (2009), and
(iii) the inverse of the ordering of Bloom (2009). As seen in the graphs, results are broadly
robust to these permutations.

• Figure 7: IRFs for alternative orderings

• Figure 8: Coeffi cients φ for alternative orderings, quarterly data

• Figure 9: Coeffi cients ψ for alternative orderings, quarterly data

• Figure 10: Coeffi cients φ for alternative orderings, monthly data

• Figure 11: Coeffi cients ψ for alternative orderings, monthly data
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Figure 7: IRFs with alternative orderings within the macro block. Shock to uncertainty.
For the monthly dataset, the charts also show results based on Bloom’s variable ordering,
LMN financial uncertainty measure, and a model with the S&P500 removed from the VAR.
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4 Full distributions of the IRFs

This section contains the posterior distributions of the impulse response functions at se-
lected forecast horizons (h=0, 1, 4, and 12 quarters ahead for the quarterly model and
h=0,3,12,36 for the monthly model), for the following cases:

• Figure 12: Spec.1, quarterly data, effect of imposing ψ = 0

• Figure 13: Spec.1, umonthly data, effect of imposing ψ = 0

• Figure 14: Spec.1, quarterly data, effect of imposing φ = 0

• Figure 15: Spec.1, monthly data, effect of imposing φ = 0

• Figure 16: Spec.2, quarterly data, effect of imposing ψ = 0

• Figure 17: Spec.2, monthly data, effect of imposing ψ = 0

• Figure 18: Spec.2, quarterly data, effect of imposing φ = 0

• Figure 19: Spec.2, monthly data, effect of imposing φ = 0
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Figure 12: Uncertainty shock, quarterly data. Posterior distributions of impulse responses
at selected horizons. Blue solid line denotes the case ψ 6= 0, red dashed line denotes the
case ψ = 0.
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Figure 13: Uncertainty shock, monthly data. Posterior distributions of impulse responses
at selected horizons. Blue solid line denotes the case ψ 6= 0, red dashed line denotes the
case ψ = 0.
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Figure 14: Uncertainty shock, quarterly data. Posterior distributions of impulse responses
at selected horizons. Blue solid line denotes the case φ 6= 0, red dashed line denotes the
case φ = 0.
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Figure 15: Uncertainty shock, monthly data. Posterior distributions of impulse responses
at selected horizons. Blue solid line denotes the case φ 6= 0, red dashed line denotes the
case φ = 0.
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Figure 16: Specification 1 (β = 0). Specification 1 (β = 0). Uncertainty shock, quarterly
data. Posterior distributions of impulse responses at selected horizons. Blue solid line
denotes the case ψ 6= 0, red dashed line denotes the case ψ = 0.
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Figure 17: Specification 1 (β = 0). Uncertainty shock, monthly data. Posterior distribu-
tions of impulse responses at selected horizons. Blue solid line denotes the case ψ 6= 0, red
dashed line denotes the case ψ = 0.
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Figure 18: Specification 1 (β = 0). Uncertainty shock, quarterly data. Posterior distribu-
tions of impulse responses at selected horizons. Blue solid line denotes the case φ 6= 0, red
dashed line denotes the case φ = 0.

16



PAYEM, h=0

0.04 0
0

50

IP   , h=0

0.3 0.2 0.1 0
0

5

10
HOURS, h=0

0.2 0.1 0
0

5

10
SPEND, h=0

0.1 0
0

5

10

15
ORDER, h=0

10 0

10 3

0

100

200
EARNI, h=0

0.06 0
0

10

20

30
PCEPI, h=0

0 0.04
0

20

40
FFR  , h=0

0.02 0
0

50

S&P  , h=0

5 0 5

10 3

0

100

shock to u*

0 0.05 0.1
0

1

2

0.08 0.04 0

20

40
PAYEM, h=1

0.4 0.2

2
4

6
IP   , h=1

0.2 0.1 0

2
4
6
8

10

HOURS, h=1

0.2 0.1 0

2
4
6
8

10

SPEND, h=1

20 10 0

10 3

20
40
60
80

100
120

ORDER, h=1

0.1 0

5
10
15

EARNI, h=1

0 0.05 0.1

5
10
15

PCEPI, h=1

0.04 0

20

40

FFR  , h=1

10 0

10 3

20
40
60
80

100

S&P  , h=1

0.025 0.03

100
200
300

shock to u*

0.2 0.1

5
10
15

PAYEM, h=4

0.8 0.4

1
2
3

IP   , h=4

0.2 0

2
4
6
8

HOURS, h=4

0.4 0.2

2
4
6

SPEND, h=4

0.03 0.01

20
40
60
80

ORDER, h=4

0.1 0 0.1

2
4
6
8

EARNI, h=4

0 0.2

2
4
6
8

PCEPI, h=4

0.1 0

5
10
15

FFR  , h=4

0.02 0

20
40
60

S&P  , h=4

0.02 0.03 0.04

20
40
60
80

100
shock to u*

0.8 0.6 0.4 0.2

1
2
3
4
5

PAYEM, h=12

2 1

0.5

1

1.5
IP   , h=12

0.4 0.2 0

2

4

6
HOURS, h=12

1 0.6 0.2

2

4
SPEND, h=12

0.02 0

20
40
60
80

100

ORDER, h=12

0 0.4

2

4
EARNI, h=12

0 0.2 0.4 0.6

2

4
PCEPI, h=12

0.2 0.1 0

2
4
6
8

FFR  , h=12

0.04 0

20

40

S&P  , h=12

0.02 0.04

20
40
60
80

shock to u*

Figure 19: Specification 1 (β = 0). Uncertainty shock, monthly data. Posterior distribu-
tions of impulse responses at selected horizons. Blue solid line denotes the case φ 6= 0, red
dashed line denotes the case φ = 0.

5 Specification tests

This section contains diagnostic tests for the Gaussianity of the (posterior means of the)
innovations contained in ε∗t . Results are organized in the following figures:

• Figure 20: Empirical distribution, Specification 2 (β 6= 0)

• Figure 21: Empirical distribution, Specification 1 (β = 0)

The 10% and 5% critical values for the Jarque-Bera tests are, respectively, 4.605 and
5.991.
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Figure 20: Normality tests, Specification 2 (β 6= 0).
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Figure 21: Normality tests, Specification 1 (β = 0).
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6 Full results of Monte Carlo experiments

• Figure 22: Design 1. DGP from univariate application, model estimated with ψ 6= 0
and ψ = 0.

• Figure 23: Design 2. DGP from univariate applition, but with ψ = 0. Model
estimated with ψ 6= 0 and ψ = 0

• Figure 24: Design 3. DGP from univariate application, model estimated with φ 6= 0
and φ = 0

• Figure 25: Design 4. DGP for the volatility is either σ2η or σ2η/100, where σ2η is the
value found in the univariate application. Model estimated with φ and ψ unrestricted.

• Figure 26: Design 5. DGP from univariate application, and with shocks to yt and
mt distributed either as Gaussian or as student t. The estimated model assumes
Gaussian shocks.
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Figure 22: Design 1. DGP from univariate application, model estimated with ψ 6= 0 and
ψ = 0.
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Figure 23: Design 2. DGP from univariate applition, but with ψ = 0. Model estimated
with ψ 6= 0 and ψ = 0
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Figure 24: Design 3. DGP from univariate application, model estimated with φ 6= 0 and
φ = 0
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Figure 25: Design 4. DGP for the volatility is either σ2η or σ
2
η/100, where σ

2
η is the value

found in the univariate application. Model estimated with φ and ψ unrestricted.
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Figure 26: Design 5. DGP from univariate application, and with shocks to yt and mt

distributed either as Gaussian or as student t. The estimated model assumes Gaussian
shocks.
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