The I(V ) characteristics of amorphous GST devices show a peculiar S-shape behavior, that is a swift rise of the current along with a voltage snap-back. This type of characteristics led to a growing research interest in view of the future application of such materials to the manufacturing of phase-change memory devices. In this work we adopt a generalization of the variable-range hopping theory to simulate charge transport in a layer of amorphous Ge2Sb2Te5 sandwiched between two planar metallic electrodes. The numerical implementation of a current-driven Monte Carlo code allows one both to provide a complete microscopic particle picture of electrical conduction in the device and to better analyze the mechanisms governing the snap-back effect.
Monte Carlo simulation of charge transport in amorphous chalcogenides
PICCININI, ENRICO;BUSCEMI, FABRIZIO;RUDAN, MASSIMO;
2009
Abstract
The I(V ) characteristics of amorphous GST devices show a peculiar S-shape behavior, that is a swift rise of the current along with a voltage snap-back. This type of characteristics led to a growing research interest in view of the future application of such materials to the manufacturing of phase-change memory devices. In this work we adopt a generalization of the variable-range hopping theory to simulate charge transport in a layer of amorphous Ge2Sb2Te5 sandwiched between two planar metallic electrodes. The numerical implementation of a current-driven Monte Carlo code allows one both to provide a complete microscopic particle picture of electrical conduction in the device and to better analyze the mechanisms governing the snap-back effect.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.