Chalcogenide GST materials can suitably be exploited for manufacturing phase-change memory devices. In this paper a transport model for the amorphous phase of GST is investigated, based on the variable-range hopping model. The model is implemented into a Monte Carlo current-driven simulation of a test device made of a layer of amorphous Ge2Sb2Te5 in contact with two planar metallic electrodes. The mechanisms governing electron transport within the device are discussed in relation to the variation of physical parameters, such as operating current, trap density, and coupling with the electric field inside the device.

Investigation of Charge Transport in Amorphous Ge2Sb2Te5 Using the Variable-Range Hopping Model

PICCININI, ENRICO;BUSCEMI, FABRIZIO;TSAFACK TSOPBENG, THIERRY BIENVENU;RUDAN, MASSIMO;
2009

Abstract

Chalcogenide GST materials can suitably be exploited for manufacturing phase-change memory devices. In this paper a transport model for the amorphous phase of GST is investigated, based on the variable-range hopping model. The model is implemented into a Monte Carlo current-driven simulation of a test device made of a layer of amorphous Ge2Sb2Te5 in contact with two planar metallic electrodes. The mechanisms governing electron transport within the device are discussed in relation to the variation of physical parameters, such as operating current, trap density, and coupling with the electric field inside the device.
2009
2009 International Conference on Simulation of Semiconductor Processes and Devices
230
233
Piccinini E.; Buscemi F.; Tsafack T.; Rudan M.; Brunetti R.; Jacoboni C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/89613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact