We consider sums of squares operators globally defined on the torus. We show that if some assumptions are satisfied the operators are globally analytic hypoelliptic. The purpose of the assumptions is to rule out the existence of a Hamilton leaf on the characteristic variety lying along the fiber of the cotangent bundle, i.e. the case of the (global) Metivier operator. (C) 2022 Elsevier Inc. All rights reserved.

Antonio Bove, Gregorio Chinni (2022). On a class of globally analytic hypoelliptic sums of squares. JOURNAL OF DIFFERENTIAL EQUATIONS, 327, 109-126 [10.1016/j.jde.2022.04.013].

On a class of globally analytic hypoelliptic sums of squares

Antonio Bove
;
Gregorio Chinni
2022

Abstract

We consider sums of squares operators globally defined on the torus. We show that if some assumptions are satisfied the operators are globally analytic hypoelliptic. The purpose of the assumptions is to rule out the existence of a Hamilton leaf on the characteristic variety lying along the fiber of the cotangent bundle, i.e. the case of the (global) Metivier operator. (C) 2022 Elsevier Inc. All rights reserved.
2022
Antonio Bove, Gregorio Chinni (2022). On a class of globally analytic hypoelliptic sums of squares. JOURNAL OF DIFFERENTIAL EQUATIONS, 327, 109-126 [10.1016/j.jde.2022.04.013].
Antonio Bove; Gregorio Chinni
File in questo prodotto:
File Dimensione Formato  
On a Class of Globally Analytic Hypoelliptic Sums of Squares(A.Bove_G.Chinni).pdf

Open Access dal 27/04/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 504.82 kB
Formato Adobe PDF
504.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/896115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact