We study binary mergers in bootstrapped Newtonian gravity, where higher-order couplings are added to the non-relativistic Lagrangian for the Newtonian potential. In this theory, the Arnowitt-Deser-Misner (ADM) mass differs from both the proper mass of Newtonian gravity and the proper mass of general relativity, which affects the interpretation of astrophysical and cosmological events. The aforementioned difference particularly provides important phenomenological constraints for the mass of the emitted matter and the compactness of the final object after the merger. The interpretation of the GW150914 signal in this theory also shows that LIGO’s findings do not violate the mass gap, contrary to usual claims. We indeed find that typical stellar black hole masses can fit LIGO’s data for a considerable range of compactness values. We calculate the black hole entropy in this context, which leads to a generalised black hole area law. Non-linear effects are found to effectively change only the gravitational strength via the renormalisation of Newton’s constant in this case.

Casadio, R., Kuntz, I., Micu, O. (2022). Binary mergers in bootstrapped Newtonian gravity: Mass gap and black hole area law. PHYSICS LETTERS. SECTION B, 834, 1-9 [10.1016/j.physletb.2022.137455].

Binary mergers in bootstrapped Newtonian gravity: Mass gap and black hole area law

Casadio, Roberto;
2022

Abstract

We study binary mergers in bootstrapped Newtonian gravity, where higher-order couplings are added to the non-relativistic Lagrangian for the Newtonian potential. In this theory, the Arnowitt-Deser-Misner (ADM) mass differs from both the proper mass of Newtonian gravity and the proper mass of general relativity, which affects the interpretation of astrophysical and cosmological events. The aforementioned difference particularly provides important phenomenological constraints for the mass of the emitted matter and the compactness of the final object after the merger. The interpretation of the GW150914 signal in this theory also shows that LIGO’s findings do not violate the mass gap, contrary to usual claims. We indeed find that typical stellar black hole masses can fit LIGO’s data for a considerable range of compactness values. We calculate the black hole entropy in this context, which leads to a generalised black hole area law. Non-linear effects are found to effectively change only the gravitational strength via the renormalisation of Newton’s constant in this case.
2022
Casadio, R., Kuntz, I., Micu, O. (2022). Binary mergers in bootstrapped Newtonian gravity: Mass gap and black hole area law. PHYSICS LETTERS. SECTION B, 834, 1-9 [10.1016/j.physletb.2022.137455].
Casadio, Roberto; Kuntz, Iberê; Micu, Octavian
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0370269322005895-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 301.74 kB
Formato Adobe PDF
301.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/894413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact