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relativity, which affects the interpretation of astrophysical and cosmological events. The aforementioned
difference particularly provides important phenomenological constraints for the mass of the emitted
matter and the compactness of the final object after the merger. The interpretation of the GW150914
signal in this theory also shows that LIGO’s findings do not violate the mass gap, contrary to usual
claims. We indeed find that typical stellar black hole masses can fit LIGO’s data for a considerable range
of compactness values. We calculate the black hole entropy in this context, which leads to a generalised
black hole area law. Non-linear effects are found to effectively change only the gravitational strength via
the renormalisation of Newton's constant in this case.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the greatest discoveries of the past few years was the detection of gravitational waves by LIGO. Not only has it been the
strongest evidence for the gravitational radiation, but it also opened up new avenues for astrophysical exploration. The comparison of
LIGO’s data to templates from numerical relativity has shown that the observed signal had been produced by the coalescence of a binary
system of black holes. Adopting non-precessing numerical relativity simulations, the mass of the remnant black hole was also inferred,
culminating in the heaviest stellar black hole ever found [1,2]. Despite the great appraisal for the discovery of gravitational waves, some
portion of the community remained skeptical due to the unusual black hole mass found after the merger. Indeed, such a mass would
violate the upper mass gap that has been found in many contexts [3-5].

LIGO’s data has been interpreted using general relativity, which, despite its success in the weak-field and classical regimes, has faced
many downfalls at quantum scales. Moreover, general relativity alone cannot account for the anomalous galaxy rotation curves or even
dark energy. The quest for a theory that could improve the ultra-violet behaviour of gravity or elucidate the dark sector has led to a
plethora of alternatives to general relativity. Interpreting LIGO’s data within other models could then completely change their conclusions.

In this letter, we shall study the merger of compact bodies in bootstrapped Newtonian gravity [6-11], in which the leading post-
Newtonian terms are included from the onset and assumed to be of comparable magnitude to the Newtonian one. Because such a theory
modifies the strong-field regime of Newtonian gravity, its relativistic generalisation cannot be general relativity. The next-to-leading (and
higher) order post-Newtonian terms indeed vanish identically, while the additional coupling constants do not take the values prescribed
by general relativity. In particular, we shall show that this model can fit the GW150914 signal within the range of typical stellar mass
black holes.

A major prediction of the bootstrapped program concerns the difference between the Arnowitt-Deser-Misner-like (ADM) mass [12] and
the proper mass of a compact object. While only the former makes its presence felt in orbits, they are both conserved (unless the system
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radiates), which leads to additional constraints. This is an important aspect of the theory that cannot be taken lightly when interpreting
astrophysical phenomena. The main goal of this paper is to investigate the phenomenological consequences of the inequivalence between
the ADM and the proper masses for the merger of compact objects. As a result of such an inequivalence, mergers are constrained in at
least two ways: (i) ejected masses cannot be arbitrarily small in star mergers and (ii) black holes tend to become less and less compact.
The former imposes a lower bound on the mass ejected during the merger that depends on the masses and radii of the initial objects. The
latter, on the other hand, shows that black holes are likely to merge into heavier, but less dense, black holes. To show this we calculate
the black hole entropy using Newtonian arguments, which yields a modified law for the area of black holes. Such a modification results
in a simple renormalisation of Newton’s constant, thus effectively changing the strength of gravity.

This paper is organised as follows. In Section 2, we review the main aspects of the bootstrapped Newtonian gravity, including its field
equation. The solution of the latter is then reviewed for a source described by a homogeneous ball with negligible pressure in Section 2.1,
where the difference between the ADM mass and the proper mass becomes apparent. Such a solution is then used to model stars and
black holes, whose merger is studied in Section 3. In Section 4, we employ Newtonian arguments to calculate the black hole entropy,
generalising the area law for black holes in the context of the bootstrapped Newtonian gravity, and show that the GW150914 event can
be accommodated without violating the upper mass gap. Finally, we draw our conclusions in Section 5.

2. Bootstrapped Newtonian gravity

In the most general form, the Lagrangian for the bootstrapped Newtonian potential V = V (r) for a system that is both static and
spherically symmetric can be written as [6]

o

L[V]=LN[V]—47r/r2dr[qv3vV+qp3pV+qp3p (p+3app)] . (21)
0
where
L[V]:—4n7r2c1r ﬂ+,ov (2.2)
N 87 G : :
0

is the standard Newtonian Lagrangian (with f’ =df/dr) which yields the Poisson equation
i
(V') = AV =47 Gyp (23)

for the Newtonian potential V = V sourced by the matter energy density p = p(r). The gravitational self-coupling contribution is sourced
by the gravitational energy Uy per unit volume [6,13]

_duy Vol

>~ =, 24
v="g 27 Gy (24)
The static pressure p = p(r) cannot be neglected for sources with relatively large compactness [6]
Gn M
=N7 (2.5)
R

where M is the ADM-like mass that one would measure when studying orbits [14] and R is the radius of the source. A potential energy
Up then needs to be added such that

dup,
dv
which effectively shifts p — o + 3qp p, where q, is a positive coupling constant. These terms, together with the next-order general
relativistic term J, = —2 V2 [15], result in the total Lagrangian (2.1).
The three (dimensionless) coupling constants qy, qp and g, could be connected to different specific theories of the interaction between
gravity and matter (for similar considerations, see, e.g. Ref. [16]). For the sake of simplicity, in the rest of this paper we shall take qy =qp,
so that the Euler-Lagrange equation for the bootstrapped Newtonian potential reads

2qv (V/)2
1—4qy V"’

One important aspect that is not apparent from the above derivation is that the mass M in Eq. (2.5) is not equal to the source’s
“Newtonian” proper mass [6,10]

dp~ 3p, (2.6)

AV =4mGn(p+3qpp) + (2.7)

R

M0:4nfr2 drp(). (2.8)
0

1 We shall use units with ¢ =1.
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This follows precisely because of the non-linearity of Eq. (2.7). This contrasts the Newtonian case, where M = My, and general relativity, in
which the integral (2.8) gives the ADM mass M, including all the matter energy and (negative) gravitational energy. The relation between
M and My thus serves as a genuine prediction of bootstrapped Newtonian gravity. However, it depends on the details of the particular
source in a very non-trivial manner [7,9,10].2 Since we are here interested in general results for binary mergers, we shall use such a
relation obtained from a simple approximation.

2.1. Homogeneous ball in vacuum

In the vacuum outside a source of mass M and radius r = R, we have p = p =0 and Eq. (2.7) admits the exact solution [6,17]

1 Gy M\
Vour=—|1—|1+6qyv s (2.9)
4qy r
which is obtained by fixing the constants of integration such that the leading order in the large r expansion reproduces the cor-
rect Newtonian behaviour Vy = —Gy M/r in terms of the ADM-like mass M. With this choice, the first post-Newtonian term reads

Ven = qv Gﬁ M2 /r? without any further assumption. A detailed investigation of the effective metric outside static spherically symmetric
bootstrapped Newtonian sources in terms of post-Newtonian parameters (PPN) was performed in Ref. [8]. These results were later used to
investigate geodesics and to obtain bounds using data from the Solar System and S-star orbits near our Galaxy centre [14].

From this potential, we obtain the harmonic horizon radius where the escape velocity equals the speed of light, Vo (ry) = —1/2 [7],
which results in

_ 6qy GNM
S (1+2qv)*? -1

and the Newtonian ry =2 Gn M is recovered for qy — 0. For qy =1, one has ry ~1.4GyM > R for X > 0.7. We remark that, unlike
general relativity, the matter core of a black hole has finite size R > 0 in bootstrapped Newtonian gravity (possibly as a consequence
of quantum effects [18,19]). Switching to areal coordinates [8], the above bound on the compactness of a black hole becomes X > 0.8,
corresponding to the areal horizon radius ry ~ 2.4 Gy M. In the following, we shall therefore consider that black holes are characterised
by X = 1, and regular stars by X « 1, for simplicity.

In order to establish an explicit relation between M and Mg, we shall model compact objets simply as homogeneous balls with density

y ’ (2.10)

O(R 3 Mo
pP=poOR—1)= IR
where © is the Heaviside step function enforcing the density to vanish for r > R and My is the proper mass defined in Eq. (2.8). We
shall further assume that there exists a pressure profile compatible with this density. Accounting for the pressure properly is indeed very
involved and requires numerical work (for some more details, see Refs. [9,11]).

Any solution of Eq. (2.7) for the inner potential Vij; = V(0 <r < R) needs to match smoothly with the outer vacuum solution V¢
in Eq. (2.9) across the boundary r =R of the source, that is Viy(R) = Vou(R) and V/ (R) = V((R). Furthermore, we are looking for
potentials generated by density profiles that are finite in the centre and the inner potential also needs to satisfy the regularity condition
Vi (0) =0. An approximate solution can be found by Taylor expanding around r =0 and is given by [6,7]

OR-1), (2.11)

1 14+2qy X (4—r%/R?
Vip~ — |1 av X ( 14 ) (212)
4qy (1+6qv X)V/
The matching conditions across the surface then yield*
M
My 1-2qvX)M, (2.13)

T (+6qy X)IB

for X « 1. A numerical analysis confirmed that this result is a good analytical approximation for objects of small and intermediate
compactness, that is for X < 1. Moreover, in Ref. [7], it was shown that for large X one has

M

Mo~ ———
1/3 ’
qv/ X173

(2.14)

which is qualitatively the limit X > 1 of Eq. (2.13).> We note that, after the large compactness approximation (2.13), qy can no longer be
taken to zero, thus the Newtonian limit is not accessible from this regime. The phenomenological consequences of Eqgs. (2.13) and (2.14)
will be explored in the next sections.

2 For energy considerations in the bootstrapped Newtonian framework, see in particular Ref. [6] and Appendix D of Ref. [7].

3 We assume asymptotic flatness.

4 In Ref. [11], it was shown that the internal structure of the source does not affect the potential (2.13) to second order in r. The ratio between M and Mg, however,
slightly changes according to the source’s equation of state.

5 It was argued in Ref. [18] that X should not be too large for black holes either, because of quantum effects (see also Ref. [19]), but we will not consider that bound here.



R. Casadio, I. Kuntz and O. Micu Physics Letters B 834 (2022) 137455

3. Merger of compact bodies

According to Eq. (2.13), if a compact object emits an amount §Mg of proper mass, its ADM mass will change according to

SM 2qy X SR
0= i3 B \M-—X— . (3.1)
(1+6qy X)13 (1 +6qy X)¥ GN
For X <« 1, upon neglecting terms of order X2 and higher, one obtains
SM>~(1+4+4qy X)6Mpy > 8Mop , (3.2)

which one could interpret as the fact that the emission of matter energy (for example, in the form of electromagnetic radiation or massive
jets) must be accompanied by the emission of gravitational waves. On the other hand, for X > 1, the object is a black hole and we expect
that no classical process will result in the emission of any form of energy, that is My =M = 0.
Let us then consider the merger of two objects of proper masses Mé” and ME,Z), resulting in the formation of a new object of mass
1 2

M(()f)=M(())+M(())—8Mo, (3.3)
where §Mp > 0 is the amount of proper matter energy ejected in the process. The expression for the ADM mass of the resulting object is
obtained by applying (2.13) to all three objects, that is

Ma) M)

1/3

(1+6qv X(])) / (1+6qv X2

where X =GN M)/R@), witha=1,2, f, denotes the compactness of each object. Since Mo > 0 and energy can also be emitted in the
form of gravitational waves, we expect that the difference

Mgy ~ (1 +6qv X(f))l/3|: )1/3 —SMO] , (3.4)

M ~Mq) + M@) — M)
1/3
26M0(1+6(]v X(f)) /

1+6qv X\ "3 1+6qv X\ /3
Mo, F(M) + Mo, _(M) > 5Mo . (3.5)
1+6qv Xq) 14+6qv X@2)

like for a single object. Of course, the difference with respect to that case is that two black holes with X1y ~ X(2) 2 1 can merge and emit
a finite amount of gravitational energy §M > 0 without losing proper mass (Mg = 0). Two stars, with X(1) ~ X(2) <« 1 can instead merge
and emit M 2 8Mp > 0, resulting in either a star with X(f) <« 1 or a black hole with X5 2 1.

3.1. Stars merging into stars

For X1y ~ Xy ~ X(f) < 1, we can approximate Eq. (3.5) by means of Eq. (2.13) for all of the three objects involved as

8M = (1+2qv X(f)) Mo — 2qv M) (X(r) — X)) —2av M) (X(p) — X2)) Z 8Mo (3.6)
which yields the bound
X X
SMo > (1 ) ) My + (1 ) ) M) . (3.7)
Xf) X

In particular, this shows that for X(f) > X(1) ~ X(2) the right hand side is always positive, which means that some proper mass §Mo must
be expelled when a more compact object is formed in such a merger. We can also rewrite Eq. (3.7) as

< Xy Ma) + X Me)
e~ M(]) +M(2) —8My
which shows that the amount of emitted matter energy constrains the increase in compactness.

(3.8)

3.2. Stars merging into black hole

For X1y ~ X@2) <1 and X5y 2 1, we can approximate Eq. (3.5) by means of Eq. (2.13) for the initial stars and Eq. (2.14) for the final
black hole as

1/3,1/3 1/3,1/3 1/3y,1/3
SMoqy/ X} + M [1 —(1=2qv X)) q/ x(f/)] + Mg [1 —(1-2qvX@)q/ x(]{)] > 5Mo (39)
which yields
-1/3
13 < ay'” M)+ M) — $Mo) . (3.10)
() ~ (1 — 2qv X(])) M(]) + (1 — 2qv X(z)) M(z) — 51\/10
One then find the upper bound on the final compactness
1 XM XoyM
mMa) + X)) M) (3.11)

Xns —+6
" qv M@y + M) — Mo

which is in fact larger than one.
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X0

X1

0.5¢

0 5 10 15 20 25 30 My

Fig. 1. Upper bound in Eq. (3.15): allowed values of Xy for given X3 (both in units of X(1) < X(2)) must lie below the corresponding curve, which asymptotes to Xz for
M) /My — oo.

3.3. Star merging with a black hole

In this case we have the initial and final black holes with X1y ~ X(5) 2 1, while the star has X3y « 1, and we can write Eq. (3.5) as

1/3
1/3 1/3 1/3 1/3
SMoay/> X!/} + My [ 1 - X(l—’;; + Moy [1- (1= 2av X)) 0> X(} | 2 Mo , (312)
(M
which translates into the constraint
-1/3
My + M@y — M
Ky S O 613)
May/ (qv X ) +(1-2qv X)) M) — Mo
3.4. Black holes merging into black hole
For X1y ~ X@2) ~ X(f) 2 1, Eq. (2.14) applies to all of the three objects involved and we can write Eq. (3.5) as
1/3 1/3
_1/31/3 f) )
SM ~qy, X(f) Mo + M) 1—]—/3 + M) 1—1—/3 = 8Mo . (3.14)
X @
Upon recalling that black holes should not emit matter energy, that is My = 0, we thus obtain
3
Ma) + M)
Xin s 3 i3 | XoXe, (3.15)
My X gy +Me) X3

which does not depend on qy. One can see that the above upper bound on the final compactness is always in between the two initial
values (see Fig. 1, for a few examples, in which we assumed Xy > X(1)).
If the two merging black holes have similar compactness X1y > X(2) = X(j), the emitted energy

1/3
M ~ (M(l) + M(2)) 1-— (Tf/; s (3.16)
(@)
and
X < X - (3.17)

This means that whenever two black holes of similar compactness merge, the process will result in the formation of a black hole which
is less compact. This upper bound will be supplemented with a lower bound in the following Section.

5
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4. Area law and black hole thermodynamics

Black hole mergers are the natural arena to put the laws of black hole thermodynamics to the test [20,21].

We start from a black hole of mass My = M which absorbs a much smaller star of mass M) = M. We assume that no significant
amount of proper matter energy is radiated away, so that the proper mass of the final object is the sum of the proper masses of the
merging objects,

) [¢V) 2
My =M, +M;" . (4.1)
We will also assume that the black hole maintains approximately the same compactness, Xs) ~ X(1) = X. Since we have X > 1 while
X@) < 1, the ADM mass of the final black hole is given by
1/3
M =M +q;> X3 (1-2qv X)) M . (4.2)
The “black hole area” A =4m rfl, with ry given in Eq. (2.10), under the absorption of the mass §M will thus change according to

M

AA Mg —M ) oM
M 9

|
A M

which is clearly positive.

~2q> X' (1 -2qy X (4.3)

4.1. Bootstrapped Newtonian entropy

The above result suggests that the area law holds but the precise form of the black hole entropy gets modified in the bootstrapped
Newtonian theory with respect to general relativity. We shall then employ simple Newtonian arguments in order to study the black hole
thermodynamics.®

The black hole temperature is generally given by [22]

K
=—), 4.4
5 (4.4)
where k = a(ry) is the surface gravity, namely the gravitational acceleration on the horizon ry. In Newtonian terms, the acceleration is
obtained by simply differentiating the potential Vo in Eq. (2.9),

Gy M GyM\ 13
ar) = — <1 +6qy ; ) } (4.5)
From Egs. (2.10) and (4.4), we then find
__Aav) (456)
8 GNM ’ .
where we defined
2
(1+2qv)*? -1
B@v) = [ ] (4.7)

9gy (1+2qv)'"?
The Hawking temperature is therefore deformed by a constant coefficient 8(qy), which depends only on the parameter qy and satisfies
B(qv — 0) — 1. We also note that B(qy) effectively changes the strength of gravity, thus all corresponding thermodynamical quantities
could be obtained by simply replacing
GN
B@v)

in the standard Schwarzschild results.

Indeed, the black hole entropy is obtained by considering that the absorbed heat is fully converted into the ADM mass,
_daMm
==
thus leading to

Gn — (4.8)

ds

_ 4w GyM?
B@v)
which agrees with the rule (4.8).
In the following, we shall compute the difference in the entropy for the merger of two black holes assuming, as before, that no proper

matter energy is emitted (or has already been emitted before the black holes formed). Since the entropy is additive, before the merger we
have

= A 410
—,B(QV)E, (4.10)

6 A full account of this topic would be obtained by quantising matter fields in the reconstructed black hole geometry [11].

6
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2 2 ) _On
S(,‘)=5(1)+5(2)=47T(M(1)+M(2)> B . (411)
Considering the conservation of the proper mass, after the merger one finds
2
1/3 1/3
47 G | X o
Sp= ]—M(1)+—M(2) . (4.12)
/3 1/3
B@qv) X4 >
Therefore, the variation of the entropy during the merger reads
2/3 2/3 2/3
anen | [ X5 2 o 2, XpMaoMe
AS=Sy—Siy=——— =5 -1 |My+ | S5 -1 My +——F5—5— (413)
/3 M 2/3 ) 1/3 ,1/3
Bav) |\ x, X5, Xdy X

Note that if the final compactness X(r) were larger than the compactness of each of the merging black holes X1y and X(2), the change
in entropy would always be positive. However, we have seen in Section 3.4 that the compactness is supposed to decrease during the
merging and the quantity in the curly brackets above is not necessarily positive in general. This means that a constraint on the masses
and compactnesses must hold if the entropy cannot decrease.

For simplicity, let us take initial black holes of approximately the same compactness X1y > X(2) = X(j). In this scenario, during a merger
event, the horizon area increases if

2/3 2 2/3 2 2
Xty (M) +Me@)” = X() (M(1) + M(Z)) : (4.14)

By combining this lower bound with the upper bound from Section 3.4, we thus find

MZ +M2 3/2 X
[ w70 XD oy (415)
(Ma) +M@) X

where the lower bound is clearly less than one.
4.2. Identical black holes mergers

If we further take M(1) = M(2) = M;), the mass dependence from the constraint (4.15) goes away and the constraint becomes

1 X
<2 <1 (4.16)

227 Xy ™
Let us then consider a population of black holes of the same compactness X and mass M. These black holes merge in pairs repeatedly,
so that at each step of the process mergers of identical black holes with larger masses and smaller compactness take place. After N
iterations, the black hole has a mass of

X\
M) = 2" Mg : (417)
X
The energy radiated as gravitational waves during the N-th merger is
1/3 1/3
X X
N N—1
EGWZSMNZM(N)—2M(N,1)22NM(1‘) (]—/;— (]/3) (4.18)
X! ),
(1) (1)
From the constraint (4.16), we have X(yy >~ o X(v—1) with 0.35 Sa <1 and
13\V
M(N) ~ (20{ ) M(i) s (419)
which implies
M
148 < — M <ol (4.20)
0]
4.3. GW150914 signal and the upper mass gap violation
From Eq. (3.5), the energy emitted into gravitational waves for large compactnesses, reads
1/3 1/3
~ €)) )
EGWZ5M_M(1) 1—1—/3 +M(2) 1—]—/3 . (4.21)
(1) (@)

Note that, although mergers always yield heavier black holes, the final compactness must be smaller according to Section 3.4.

7
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The relation (3.4) for very compact objects must be computed using Eq. (2.14) and reads

M M
(lﬁ —Xl(/13) + —Xl(/23) : (4.22)
M @

Using the masses observed at LIGO, that is M(1) =29 Mg, M) =36 Mg and M(f) =62 Mg [2], leads to

x 1/3 X 1/3
62~ 29 (Lf)) 136 <ﬂ) . (4.23)
X X

Since the two initial black holes are similar in size, we approximate Xy ~ X2y = X(;) to wit

M(f) ~ X

X
20 ~087. (4.24)

This ratio is in the allowed range in Eq. (4.16). It also shows that the error induced by assuming X1y = X(2) was fairly small since the
compactness decreases by 0.13% when the black hole mass is doubled.
From Eq. (2.14), one finds that typical stellar black hole (proper) masses fall in the range

M .
5Mp < =P <50 M, (4.25)
~ _1/3 X 13"
4v A0
as expected from the lower and upper mass gaps [3-5]. The measurement of a 62 My black hole by LIGO is often used as evidence for
the absence of an upper mass gap. Nevertheless, the difference between ADM and proper masses that originates from the aforementioned
non-linearities requires some caution before jumping to such strong conclusions. The range (4.25) can indeed be translated into a bound

on the compactness X, namely

1 ( Mg \° 1 (Mg \°
— (#> SX)S— (#) : (4.26)
qv \50Mg qv \5Mg

The parameter qy is strongly constrained to be closed to one [14], thus in the following we shall take qy ~ 1. Applying Eq. (4.26) for each
of the masses observed at LIGO (M(1) =29 Mg, M) =36 Mg and M) =62 M) [2], one finds

1.9< X $195.1. (4.27)

We stress that LIGO findings do not violate the upper mass gap in the range (4.27). Non-linear effects are thus able to fit LIGO data
without requiring untypical values for stellar black hole masses.

5. Conclusions

In this work, we have studied binary mergers in the framework of the bootstrapped Newtonian gravity. An interesting prediction of this
theory regards the difference between the ADM and proper mass of an object. This feature is particularly important when interpreting
astrophysical and cosmological phenomena because they are both conserved, yielding additional constraints. The final ADM black hole
mass after the emission of the GW150914 measured by LIGO can thus satisfy the proper mass gap found for typical scenarios of stellar
black holes.

The study of mergers has also revealed several constraints that showed up due to the ADM-proper mass inequivalence. When stars
merge into stars, one such constraint imposes a lower bound on the ejected mass during the merger, which depends on the inherent
properties of the initial bodies. For stars merging into black holes, the ejected mass is rather limited from above. Similar lower/upper
bounds take place when stars merge with black holes and for black hole mergers. In each of these cases we also calculate constraints on
the compactness of the final object in terms of the initial ones. We stress that these bounds are testable predictions of the theory, which
can be falsified by the observation of an ejected mass smaller (respectively greater) than the lower (respectively upper) bounds.

For the case of black holes, we used Newtonian arguments to calculate the black hole entropy. The result turned out to take the same
form as the celebrated area law, apart from an additional multiplicative constant factor which effectively alters the gravitational strength.
The second law of thermodynamics applied to black hole mergers, in which no mass (but only radiation) is emitted, implies that when
such processes take place, an additional constrain must apply besides the decrease of the compactness after the merger. The final black
hole is thus heavier but less dense than the initial ones.
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