Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as ‘signaling hubs’. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called ‘SURFACER’. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.

Mercatelli, D., Cabrelle, C., Veltri, P., Giorgi, F.M., Guzzi, P.H. (2022). Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data. BRIEFINGS IN BIOINFORMATICS, 23, 1-11 [10.1093/bib/bbac400].

Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data

Mercatelli, Daniele;Cabrelle, Chiara;Giorgi, Federico M;
2022

Abstract

Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as ‘signaling hubs’. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called ‘SURFACER’. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.
2022
Mercatelli, D., Cabrelle, C., Veltri, P., Giorgi, F.M., Guzzi, P.H. (2022). Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data. BRIEFINGS IN BIOINFORMATICS, 23, 1-11 [10.1093/bib/bbac400].
Mercatelli, Daniele; Cabrelle, Chiara; Veltri, Pierangelo; Giorgi, Federico M; Guzzi, Pietro H
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/893865
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact