Segmentation is a low-level vision cue often deployed by stereo algorithms to assume that disparity within superpixels varies smoothly. In this paper, we show that constraining, on a superpixel basis, the cues provided by a recently proposed technique, which explicitly models local consistency among neighboring points, yields accurate and dense disparity fields. Our proposal, starting from the initial disparity hypotheses of a fast dense stereo algorithm based on scanline optimization, demonstrates its effectiveness by enabling us to obtain results comparable to top-ranked algorithms based on iterative disparity optimization methods.

S. Mattoccia (2010). Accurate dense stereo by constraining local consistency on superpixels. PISCATAWAY, NJ : IEEE [10.1109/ICPR.2010.452].

Accurate dense stereo by constraining local consistency on superpixels

MATTOCCIA, STEFANO
2010

Abstract

Segmentation is a low-level vision cue often deployed by stereo algorithms to assume that disparity within superpixels varies smoothly. In this paper, we show that constraining, on a superpixel basis, the cues provided by a recently proposed technique, which explicitly models local consistency among neighboring points, yields accurate and dense disparity fields. Our proposal, starting from the initial disparity hypotheses of a fast dense stereo algorithm based on scanline optimization, demonstrates its effectiveness by enabling us to obtain results comparable to top-ranked algorithms based on iterative disparity optimization methods.
2010
20th International Conference on Pattern Recognition (ICPR2010)
1832
1835
S. Mattoccia (2010). Accurate dense stereo by constraining local consistency on superpixels. PISCATAWAY, NJ : IEEE [10.1109/ICPR.2010.452].
S. Mattoccia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/89232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact