Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.

Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles / Scurti, S.; Caretti, D.; Mollica, F.; Di Antonio, E.; Amorati, R.. - In: ANTIOXIDANTS. - ISSN 2076-3921. - ELETTRONICO. - 11:6(2022), pp. 1163.1-1163.13. [10.3390/antiox11061163]

Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles

Scurti, S.;Caretti, D.;Mollica, F.;Amorati, R.
2022

Abstract

Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.
2022
Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles / Scurti, S.; Caretti, D.; Mollica, F.; Di Antonio, E.; Amorati, R.. - In: ANTIOXIDANTS. - ISSN 2076-3921. - ELETTRONICO. - 11:6(2022), pp. 1163.1-1163.13. [10.3390/antiox11061163]
Scurti, S.; Caretti, D.; Mollica, F.; Di Antonio, E.; Amorati, R.
File in questo prodotto:
File Dimensione Formato  
antioxidants-11-01163.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/888933
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact