A number of methods proposed in the past few years have been aimed at accelerating the sampling of rare events in molecular dynamics simulations. We recently introduced a method called Boxed Molecular Dynamics (BXD) for accelerating the calculation of thermodynamics and kinetics (J. Phys. Chem. B 2009, 113, 16603 -16611). BXD relies upon confining the system in a series of adjacent "boxes" by inverting the projection of the system velocities along the reaction coordinate. The potential of mean force along the reaction coordinate is obtained from the mean first passage times (MFPTs) for exchange between neighboring boxes, simultaneously providing both kinetics and thermodynamics. In this paper, we investigate BXD in the context of its natural relation to a kinetic master equation and show that the BXD first passage times (FPTs) include different time scales-a fast short time decay due to correlated dynamical motion and slower long time decay arising from phase space diffusion. Correcting the FPTs to remove the fast correlated motion yields accurate thermodynamics and master equation kinetics. We also discuss interrelations between BXD and a recently described Markovian milestoning technique and use a simple application to show that, despite each method producing distinct nonstatistical effects on time scales on the order of dynamical decorrelation, both yield similar long-time kinetics. © 2011 American Chemical Society.

Boxed molecular dynamics: Decorrelation time scales and the kinetic master equation / Glowacki D.R.; Paci E.; Shalashilin D.V.. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - STAMPA. - 7:5(2011), pp. 1244-1252. [10.1021/ct200011e]

Boxed molecular dynamics: Decorrelation time scales and the kinetic master equation

Paci E.;
2011

Abstract

A number of methods proposed in the past few years have been aimed at accelerating the sampling of rare events in molecular dynamics simulations. We recently introduced a method called Boxed Molecular Dynamics (BXD) for accelerating the calculation of thermodynamics and kinetics (J. Phys. Chem. B 2009, 113, 16603 -16611). BXD relies upon confining the system in a series of adjacent "boxes" by inverting the projection of the system velocities along the reaction coordinate. The potential of mean force along the reaction coordinate is obtained from the mean first passage times (MFPTs) for exchange between neighboring boxes, simultaneously providing both kinetics and thermodynamics. In this paper, we investigate BXD in the context of its natural relation to a kinetic master equation and show that the BXD first passage times (FPTs) include different time scales-a fast short time decay due to correlated dynamical motion and slower long time decay arising from phase space diffusion. Correcting the FPTs to remove the fast correlated motion yields accurate thermodynamics and master equation kinetics. We also discuss interrelations between BXD and a recently described Markovian milestoning technique and use a simple application to show that, despite each method producing distinct nonstatistical effects on time scales on the order of dynamical decorrelation, both yield similar long-time kinetics. © 2011 American Chemical Society.
2011
Boxed molecular dynamics: Decorrelation time scales and the kinetic master equation / Glowacki D.R.; Paci E.; Shalashilin D.V.. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - STAMPA. - 7:5(2011), pp. 1244-1252. [10.1021/ct200011e]
Glowacki D.R.; Paci E.; Shalashilin D.V.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/885246
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact