Multimuon data from the MACRO experiment at Gran Sasso have been analyzed using a new method, which allows one to estimate the primary cosmic ray fluxes. The estimated all-particle spectrum is higher and flatter than the one obtained from direct measurements but is consistent with EAS array measurements. The spectral indexes of the fitted energy spectrum are 2.56[Formula presented]0.05 for [Formula presented]500 TeV and 2.9[Formula presented]0.3 for [Formula presented]5000 TeV with a gradual change at intermediate energies. The average mass number shows little dependence on the primary energy below 1000 TeV, with a value of 10.1[Formula presented]2.5 at 100 TeV. At higher energies the best fit average mass shows a mild increase with energy, even though no definite conclusion can be reached taking into account errors. The fitted spectra cover a range from [Formula presented] 50 TeV up to several thousand TeV. © 1997 The American Physical Society.

High energy cosmic ray physics with underground muons in MACRO. II. Primary spectra and composition

Giacomelli G.;Margiotta-Neri A.;Spurio M.;
1997

Abstract

Multimuon data from the MACRO experiment at Gran Sasso have been analyzed using a new method, which allows one to estimate the primary cosmic ray fluxes. The estimated all-particle spectrum is higher and flatter than the one obtained from direct measurements but is consistent with EAS array measurements. The spectral indexes of the fitted energy spectrum are 2.56[Formula presented]0.05 for [Formula presented]500 TeV and 2.9[Formula presented]0.3 for [Formula presented]5000 TeV with a gradual change at intermediate energies. The average mass number shows little dependence on the primary energy below 1000 TeV, with a value of 10.1[Formula presented]2.5 at 100 TeV. At higher energies the best fit average mass shows a mild increase with energy, even though no definite conclusion can be reached taking into account errors. The fitted spectra cover a range from [Formula presented] 50 TeV up to several thousand TeV. © 1997 The American Physical Society.
PHYSICAL REVIEW D
Ambrosio M.; Antolini R.; Auriemma G.; Baker R.; Baldini A.; Barbarino G.C.; Barish B.C.; Battistoni G.; Bellotti R.; Bemporad C.; Bernardini P.; Bilokon H.; Bisi V.; Bloise C.; Bosio T.; Bower C.; Bussino S.; Cafagna F.; Calicchio M.; Campana D.; Carboni M.; Castellano M.; Cecchini S.; Cei F.; Chiarella V.; Corona A.; Coutu S.; De Cataldo G.; Dekhissi H.; De Marzo C.; De Mitri I.; De Vincenzi M.; Di Credico A.; Erriquez O.; Fantini R.; Favuzzi C.; Forti C.; Fusco P.; Giacomelli G.; Giannini G.; Giglietto N.; Goretti M.; Grassi M.; Grillo A.; Guarino F.; Guarnaccia P.; Gustavino C.; Habig A.; Hanson K.; Hawthorne A.; Heinz R.; Hong J.T.; Iarocci E.; Katsavounidis E.; Kearns E.; Kyriazopoulou S.; Lamanna E.; Lane C.; Levin D.S.; Lipari P.; Longley N.P.; Longo M.J.; Mancarella G.; Mandrioli G.; Margiotta-Neri A.; Marini A.; Martello D.; Marzari-Chiesa A.; Mazziotta M.N.; Michael D.G.; Mikheyev S.; Miller L.; Monacelli P.; Montaruli T.; Monteno M.; Mufson S.; Musser J.; Nicolo D.; Nolty R.; Okada C.; Orth C.; Osteria G.; Palamara O.; Parlati S.; Patera V.; Patrizii L.; Pazzi R.; Peck C.W.; Petrera S.; Pistilli P.; Popa V.; Raino A.; Reynoldson J.; Ricciardi M.; Ronga F.; Rubizzo U.; Sanzgiri A.; Sartogo F.; Satriano C.; Satta L.; Scapparone E.; Scholberg K.; Sciubba A.; Serra-Lugaresi P.; Severi M.; Sitta M.; Spinelli P.; Spinetti M.; Spurio M.; Steinberg R.; Stone J.L.; Sulak L.R.; Surdo A.; Tarle G.; Togo V.; Valente V.; Walter C.W.; Webb R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/877211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact