We face a rigidity problem for the fractional $p$-Laplace operator to extend to this new framework some tools useful for the linear case. It is known that $(-Delta)^s(1-|x|^{2})^s_+$ and $-Delta_p(1-|x|^{rac{p}{p-1}})$ are constant functions in $(-1,1)$ for fixed $p$ and $s$. We evaluated $(-Delta_p)^s(1-|x|^{rac{p}{p-1}})^s_+$ proving that it is not constant in $(-1,1)$ for some $pin (1,+infty)$ and $sin (0,1)$. This conclusion is obtained numerically thanks to the use of very accurate Gaussian numerical quadrature formulas.

Francesca Colasuonno, F.F. (2022). Some evaluations of the fractional p-Laplace operator on radial functions. MATHEMATICS IN ENGINEERING, 5(1), 1-23 [10.3934/mine.2023015].

Some evaluations of the fractional p-Laplace operator on radial functions

Francesca Colasuonno;Fausto Ferrari
;
2022

Abstract

We face a rigidity problem for the fractional $p$-Laplace operator to extend to this new framework some tools useful for the linear case. It is known that $(-Delta)^s(1-|x|^{2})^s_+$ and $-Delta_p(1-|x|^{rac{p}{p-1}})$ are constant functions in $(-1,1)$ for fixed $p$ and $s$. We evaluated $(-Delta_p)^s(1-|x|^{rac{p}{p-1}})^s_+$ proving that it is not constant in $(-1,1)$ for some $pin (1,+infty)$ and $sin (0,1)$. This conclusion is obtained numerically thanks to the use of very accurate Gaussian numerical quadrature formulas.
2022
Francesca Colasuonno, F.F. (2022). Some evaluations of the fractional p-Laplace operator on radial functions. MATHEMATICS IN ENGINEERING, 5(1), 1-23 [10.3934/mine.2023015].
Francesca Colasuonno, Fausto Ferrari, Paola Gervasio, Alfio Quarteroni
File in questo prodotto:
File Dimensione Formato  
10.3934_mine.2023015-ONLINE.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 573.05 kB
Formato Adobe PDF
573.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/875616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact