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Abstract: We face a rigidity problem for the fractional p-Laplace operator to extend to this new
framework some tools useful for the linear case. It is known that (−∆)s(1 − |x|2)s

+ and −∆p(1 − |x|
p

p−1 )
are constant functions in (−1, 1) for fixed p and s. We evaluated (−∆p)s(1 − |x|

p
p−1 )s

+ proving that it is
not constant in (−1, 1) for some p ∈ (1,+∞) and s ∈ (0, 1). This conclusion is obtained numerically
thanks to the use of very accurate Gaussian numerical quadrature formulas.
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1. Introduction

In this paper we wish to investigate, in a nonlocal nonlinear framework, some tools that have proved
to be particularly useful for obtaining symmetry results for local operators.

It is well known that one of the crucial steps for applying the moving plane method to
overdetermined problems à la Serrin is via a comparison principle. In the nonlocal setting there are, in
the literature, several versions of comparison principles: in the linear case p = 2, they follow by
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linearity from the maximum principle, while in the nonlinear case p , 2, they are more difficult to
obtain. Strong maximum principles for fractional Laplacian-type operators have been proved in [19],
a weak maximum principle for antisymmetric solutions of problems governed by the fractional
Laplacian can be found in [10] (see also [16] for more general nonlocal operators), and a version of
the strong maximum principle in the case of nonlocal Neumann boundary conditions can be found
in [5]. For the fractional p-Laplacian operator, we refer to [17] for a weak comparison principle (see
also [13]), and to [12, 15] for two different versions of the strong comparison principle; while some
versions of the strong maximum principle and Hopf lemma can be found in [4, 7]. In the first part of
this paper we revisit some results concerning the comparison principle for the fractional p-Laplace
operator in bounded domains and prove a slightly new version of the strong comparison principle in
Theorem 2.1.

In the second part of the paper we address the study of the p-fractional torsion problem(−∆p)su = 1 in B,

u = 0 in RN \ B,
(1.1)

where s ∈ (0, 1), p > 1, B ⊂ RN (N ≥ 1) is a ball,

(−∆p)su(x) := cN,s,p lim
ε→0+

∫
(Bε(x))c

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps dy, x ∈ B (1.2)

denotes the fractional p-Laplace operator, and cN,s,p =
sp
2 (1−s)22s−1

π
N−1

2

Γ
( N+sp

2

)
Γ
( p+1

2

)
Γ(2−s)

> 0 is a normalization

constant whose exact value plays a role in the limit cases s→ 1− and p→ 2, cf. [8, Lemma 5.1]. Such
a problem admits a unique solution, which is radial and radially non-increasing, cf. [13, Lemma 4.1],
but whose analytic expression is not known in the nonlocal nonlinear case: s ∈ (0, 1) and p , 2.

On the other hand, in the local case s = 1, for the p-Laplace operator ∆pu = div(|∇u|p−2∇u),
it is easy to prove that the function (1 − |x|m), with m =

p
p−1 , has constant p-Laplacian in (−1, 1),

see for instance [6]. Moreover, in the linear case p = 2, it has been proved that (1 − x2)s
+ satisfies

(−∆)s(1−x2)s
+ = Const. in (−1, 1), see [9]. In view of these two results, and recalling that (−∆p)su(x)→

−∆pu(x), when s → 1−, see [8, 14], as well as, of course, that (−∆2)su(x) = (−∆)su(x), it would be
interesting to check whether the function (1 − |x|m)s

+ may satisfy the equation

(−∆p)s(1 − |x|m)s
+ = Const. > 0,

for every x ∈ (−1, 1) ⊂ R. In fact, the construction of the solution of the problem (1.1) would follow
easily by a homogeneity argument. This result however does not hold true. As a matter of fact, we
prove that there exist p > 2, s ∈ (0, 1), x1, x2 ∈ (−1, 1) such that x1 , x2 and (−∆p)s(1 − |x1|

m)s
+ ,

(−∆p)s(1 − |x2|
m)s

+. Our proof follows by investigating the value of

((−∆p)s(1 − |x|m)s
+)|x=0 = 2c1,s,p

(
1
sp

+

∫ 1

0

(1 − (1 − ym)s)p−1

y1+sp dy
)
,

where the value of c1,s,p is given below formula (1.2), for N = 1.
The paper is organized as follows. In Section 2 we deduce a strong comparison principle that holds

for the fractional p-Laplace operator in any dimension N ≥ 1. Notice that, in the local case, a similar
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result has been proved only in dimension N = 2, see [18]. In Section 3 we prove, by following a
different strategy with respect to [9], that the s-fractional Laplace operator of (1 − x2)s

+ in (−1, 1) is
constant. In Section 4 we prepare the ground for a numerical evaluation of the s-fractional p-Laplacian
of (1 − |x|m)s

+, proving integrability properties, see Propositions 4.1 and 4.3, that are useful to yield
error estimates for our numerical integration formaulae. Finally, in Section 5 we show, by computing
numerically the integral in (1.2), that there exist p , 2 and s ∈ (0, 1) such that the s-fractional p-
Laplace operator of (1 − |x|m)s

+ is not constant in (−1, 1).
The software written to produce the numerical results of the present paper is freely available on

github at the URL https://github.com/pgerva/fractional-p-laplace.git.

2. The strong comparison principle for the fractional p-Laplacian

In this section, we consider the following system of inequalities(−∆p)su + q(x)|u|p−2u ≤ (−∆p)sv + q(x)|v|p−2v in Ω,

u ≤ v in RN ,
(2.1)

where s ∈ (0, 1), p > 1, Ω ⊂ RN (N ≥ 1) is a bounded domain, q ∈ L∞(Ω), and (−∆p)s denotes the
fractional p-Laplacian, which, on smooth functions u, can be written as

(−∆p)su(x) := cN,s,p lim
ε→0+

∫
(Bε(x))c

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps dy, x ∈ Ω, (2.2)

where cN,s,p > 0 is the usual normalization constant introduced in the Introduction.
We will prove the following strong comparison principle.

Theorem 2.1. Let (u, v) be a weak solution of (2.1). If u, v ∈ C(Ω) and

∫
Ω

∫
Ω

∣∣∣∣|v(x) − v(y)|p−2(v(x) − v(y)) − |u(x) − u(y)|p−2(u(x) − u(y))
∣∣∣∣

|x − y|N+sp dxdy < ∞, (2.3)

then either u < v in Ω or u ≡ v in RN .

The proof of this theorem is based on an argument first introduced in [18]. We observe that the
previous strong comparison principles for (−∆p)s, [15, Theorem 1.1] and [12, Theorem 2.7], require
different regularity assumptions on u and v and use a different proof technique. Before proving
Theorem 2.1, we introduce the functional spaces and the main definitions that will be useful to work
with weak solutions, and prove a preliminary lemma.

For every s ∈ (0, 1) and p ∈ (1,∞), we define

W s,p(RN) :=
{

u ∈ Lp(RN) :
∫
RN

∫
RN

|u(x) − u(y)|p

|x − y|N+sp dxdy < ∞
}
,

W s,p
0 (Ω) := {u ∈ W s,p(RN) : u ≡ 0 in RN \Ω},

W̃ s,p(Ω) :=
{

u ∈ Lp
loc(R

N) :
∫

Ω

∫
RN

|u(x) − u(y)|p

|x − y|N+sp dxdy < ∞
}
.
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Definition 2.2. A function u ∈ W̃ s,p(Ω) is a weak solution of (−∆p)su ≥ (≤)0 in Ω if∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy ≥ (≤)0

holds for every 0 ≤ ϕ ∈ W s,p
0 (Ω). Consequently, a function u ∈ W̃ s,p(Ω) is a weak solution of (−∆p)su =

0 in Ω if ∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy = 0

holds for every ϕ ∈ W s,p
0 (Ω).

A couple (u, v) ∈ (W̃ s,p(Ω))2 is a weak solution of (2.1) if the inequality

cN,s,p

∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy

+

∫
Ω

q(x)|u(x)|p−2u(x)ϕ(x)dx

≤ cN,s,p

∫
RN

∫
RN

|v(x) − v(y)|p−2(v(x) − v(y))(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy

+

∫
Ω

q(x)|v(x)|p−2v(x)ϕ(x)dx

holds for every 0 ≤ ϕ ∈ W s,p
0 (Ω), and u ≤ v a.e. in RN .

Lemma 2.3. If f ∈ L1
loc(Ω) is such that∫

Ω

f (x)ϕ(x)dx ≥ 0 for every 0 ≤ ϕ ∈ C∞c (Ω),

then f ≥ 0 a.e. in Ω.

Proof. Let Ω =
⋃∞

n=1 Ωn, with Ωn ⊂ Ωn+1, and let Kn be compact sets such that

Kn ⊂ Ωn ⊂ Kn+1 for every n ∈ N. (2.4)

Since f ∈ L1
loc(Ω), f ∈ L1(Kn) and consequently, by (2.4), f ∈ L1(Ωn) for every n. In particular,

f +, f − ∈ L1(Ωn) and also 1{ f −>0} ∈ L1(Ωn). Now, fix n ∈ N. By density, there exists a sequence
(ϕ j) ⊂ C∞c (Ωn) such that ϕ j → 1{ f −>0} in L1(Ωn). Therefore, passing if necessary to a subsequence, and
using the Dominated Convergence Theorem, we get

lim
j→∞

∫
Ωn

fϕ jdx =

∫
Ωn

lim
j→∞

( f + − f −)ϕ jdx = −

∫
Ωn∩{ f −>0}

f −dx. (2.5)

Now, by assumption, for every j ∈ N,
∫

Ωn
fϕ jdx =

∫
Ω

fϕ jdx ≥ 0, being ϕ j ∈ C∞c (Ωn) ⊂ C∞c (Ω). Hence,
by (2.5), ∫

Ωn∩{ f −>0}
f −dx ≤ 0. (2.6)
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We can now pass to the limit in n to obtain

0 ≥ lim
n→∞

∫
Ωn∩{ f −>0}

f −dx = lim
n→∞

∫
{ f −>0}

f −1Ωndx =

∫
{ f −>0}

f −1Ωdx

=

∫
{ f −>0}

f −dx ≥ 0,

where we have used (2.6), 1Ωn → 1Ω a.e. and the Monotone Convergence Theorem. This immediately
gives |{ f − > 0}| = 0 and concludes the proof. �

• Proof of Theorem 2.1. We introduce the notation A(h) := |h|p−2h for every h ∈ R. Since (u, v) is a
weak solution of (2.1), we get for every 0 ≤ ϕ ∈ C∞c (Ω)

I :=
1

cN,s,p

∫
Ω

q(x)(|u(x)|p−2u(x) − |v(x)|p−2v(x)|)ϕ(x)dx

≤

∫
RN

∫
RN
{|v(x) − v(y)|p−2(v(x) − v(y)) − |u(x) − u(y)|p−2(u(x) − u(y))}

·
ϕ(x) − ϕ(y)
|x − y|N+sp dxdy

=

∫
RN

∫
RN
{A(v(x) − v(y)) − A(u(x) − u(y))}

ϕ(x) − ϕ(y)
|x − y|N+sp dxdy.

(2.7)

On the other hand, let ut := tv + (1 − t)u for every t ∈ [0, 1] and w := v − u, then by straightforward
calculations we have

A(v(x) − v(y)) − A(u(x) − u(y)) =

∫ 1

0

d
dt

A(ut(x) − ut(y))dt

= (p − 1)
(∫ 1

0
|ut(x) − ut(y)|p−2dt

)
(w(x) − w(y))

=: a(x, y)(w(x) − w(y)).

We observe that a(x, y) = a(y, x) for every x, y ∈ RN . Hence, continuing the estimate in (2.7) and using
that ϕ ≡ 0 in RN \Ω, we have

I ≤
∫
RN

∫
RN

a(x, y)(w(x) − w(y))
(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy

=

∫
RN\Ω

∫
Ω

. . . dxdy +

∫
Ω

∫
Ω

. . . dxdy +

∫
Ω

∫
RN\Ω

. . . dxdy.

By the symmetry of a(·, ·), we notice that the first and the third integral in the last expression are equal,
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so that we can write

I ≤ 2
∫
RN\Ω

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(x)

|x − y|N+sp dx
)

dy

+

∫
Ω

∫
Ω

a(x, y)(w(x) − w(y))
(ϕ(x) − ϕ(y))
|x − y|N+sp dxdy

=

∫
RN

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(x)

|x − y|N+sp dx
)

dy

+

∫
RN\Ω

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(x)

|x − y|N+sp dx
)

dy

−

∫
Ω

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(y)

|x − y|N+sp dx
)

dy.

(2.8)

As for the last integral, in view of (2.3), we can manipulate it in the following way

−

∫
Ω

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(y)

|x − y|N+sp dx
)

dy

= −

∫
Ω

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(y)

|x − y|N+sp dy
)

dx

=

∫
Ω

(∫
Ω

a(x, y)(w(x) − w(y))
ϕ(x)

|x − y|N+sp dx
)

dy,

therefore, we can sum up the last two integrals in (2.8) to get in conclusion

I ≤ 2
∫
RN

(∫
Ω

a(x, y)
(w(x) − w(y))
|x − y|N+sp ϕ(x)dx

)
dy

= 2
∫

Ω

(∫
RN

a(x, y)
(w(x) − w(y))
|x − y|N+sp dy

)
ϕ(x)dx

(2.9)

for every 0 ≤ ϕ ∈ C∞c (Ω). Arguing in a similar way, we can re-write the integral I as follows

I =
1

cN,s,p

∫
Ω

q(x)(A(u(x)) − A(v(x)))ϕ(x)dx

=
1

cN,s,p

∫
Ω

q(x)
(
−

∫ 1

0

d
dt

A(ut(x))dt
)
ϕ(x)dx

= −

∫
Ω

q(x)

 (p − 1)
∫ 1

0
|ut(x)|p−2dt

cN,s,p

 w(x)ϕ(x)dx =: −
∫

Ω

q(x)b(x)w(x)ϕ(x)dx.

(2.10)

Combining together (2.9) and (2.10), we get∫
Ω

(
2
∫
RN

a(x, y)
(w(x) − w(y))
|x − y|N+sp dy + q(x)b(x)w(x)

)
ϕ(x)dx ≥ 0

for every 0 ≤ ϕ ∈ C∞c (Ω). Thus, by Lemma 2.3, this implies that

2
∫
RN

a(x, y)
w(x) − w(y)
|x − y|N+sp dy ≥ −q(x)b(x)w(x) for a.e. x ∈ Ω.
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Now, suppose by contradiction that there exists x0 ∈ Ω such that w(x0) = 0, then∫
RN

a(x0, y)
−w(y)

|x0 − y|N+sp dy ≥ 0. (2.11)

Since w = v − u ≥ 0 a.e. in RN and a(x, y) ≥ 0 for a.e. x, y ∈ RN , (2.11) implies that a(x0, y)w(y) = 0
for a.e. y ∈ RN .

We are now ready to conclude. We observe that, if a(x0, y) = 0 for some y ∈ RN , then w(y) = 0.
Indeed, by straightforward calculations, if

a(x0, y) = (p − 1)
∫ 1

0
|u(x0) − u(y) + t(u(y) − v(y))|p−2dt = 0,

then
u(x0) − u(y) + t(u(y) − v(y)) = 0 for every t ∈ [0, 1],

which gives u(y) = v(y), or equivalently w(y) = 0. So, we have proved that a(x0, y)w(y) = 0 for a.e.
y ∈ RN is equivalent to w(y) = 0 for a.e. y ∈ RN , which concludes the proof. �

Arguing as in [17, Lemma 9], we have the following weak comparison principle. We stress that,
with respect to Theorem 2.1, we need to ask u to be continuous in the whole space and q to be non-
negative.

Lemma 2.4. Let (u, v) be a weak solution of(−∆p)su + q(x)|u|p−2u ≤ (−∆p)sv + q(x)|v|p−2v in Ω,

u ≤ v in RN \Ω,

where 0 ≤ q ∈ L∞(Ω). If u, v ∈ C(RN), then u ≤ v also in Ω.

Proof. Reasoning as in the first part of the proof of Theorem 2.1, we get for every 0 ≤ ϕ ∈ W s,p
0 (Ω)∫

RN

∫
RN

a(x, y)(w(x) − w(y))
ϕ(x) − ϕ(y)
|x − y|N+sp dx dy ≥ −

∫
Ω

q(x)b(x)w(x)ϕ(x)dx, (2.12)

with the same definitions for a, b, and w = v−u. Now, following the idea in [17, Lemma 9], we choose
ϕ := (u − v)+ = w− and observe that

wϕ = (w+ − w−)w− = −(w−)2 ≤ 0.

Hence, putting ϕ = w−, and using that q ≥ 0, we get from (2.12)∫
RN

∫
RN

a(x, y)(w(x) − w(y))
w−(x) − w−(y)
|x − y|N+sp dx dy ≥ 0.

The proof now can be completed exactly as in [17, Lemma 9]. �

Combining the previous lemma with Theorem 2.1, we get the following.

Corollary 2.5. Let (u, v) be a weak solution of(−∆p)su + q(x)|u|p−2u ≤ (−∆p)sv + q(x)|v|p−2v in Ω,

u ≤ v in RN \Ω,

where 0 ≤ q ∈ L∞(Ω). If u, v ∈ C(RN) and (2.3) holds, then either u < v in Ω or u ≡ v in RN .
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3. The fractional torsion problem

Let s ∈ (0, 1). In this section we consider the following problem

(−∆)su = 1 in BR

u = 0 in RN \ BR,
(3.1)

where BR ⊂ R
N is the ball of radius R centered at the origin.

Remark 3.1. We observe that, at least formally, the N-dimensional fractional Laplacian (−∆)s
N of a

function u : RN → R can be expressed in terms of the 1-dimensional fractional Laplacian (−∆)s
1 of

related functions of one variable. Indeed, denoting simply cN,s := cN,s,2, we get for every x ∈ RN

1
cN,s

(−∆)s
Nu(x) = lim

ε→0+

∫
RN\Bε(0)

u(x) − u(y)
|x − y|N+2s dy = lim

ε→0+

∫ +∞

ε

(∫
∂Bt(x)

u(x) − u(y)
|x − y|N+2s dσ(y)

)
dt

= lim
ε→0+

∫ +∞

ε

(∫
∂B1(x)

u(x) − u(x − tν)
t2s+1 dσ(ν)

)
dt

= lim
ε→0+

{∫
∂B1(x)∩{xN>0}

(∫ +∞

ε

u(x) − u(x − tν)
t2s+1 dt

)
dσ(ν)

+

∫
∂B1(x)∩{xN<0}

(∫ +∞

ε

u(x) − u(x − tν)
t2s+1 dt

)
dσ(ν)

}
= lim

ε→0+

∫
∂B1(x)∩{xN>0}

(∫
R\(−ε,ε)

u(x) − u(x − tν)
|t|2s+1 dt

)
dσ(ν)

=

∫
∂B1(x)∩{xN>0}

(
lim
ε→0+

∫
R\(−ε,ε)

u(x) − u(x − tν)
|t|2s+1 dt

)
dσ(ν)

=

∫
∂B1(x)∩{xN>0}

1
c1,s

(−∆)s
1ψν,x(0)dσ(ν),

where ψν,x(t) := u(x− tν) for every t ∈ R. In particular, for uN(x) = (1− |x|2)s
+, ψν,x(t) = u1(|x− tν|), and

so, once it is proved that (−∆)s
1u1 is constant, one has immediately that also (−∆)s

NuN is constant.

In the light of the previous remark, from now on in the paper we consider only the case of dimension
N = 1, and drop all subscripts referring to the dimension. Moreover, for the sake of simplicity, we take
the radius R to be 1. In this setting, we give an alternative proof of the fact that the solution of (3.1) is
given by vs(x) := sin(πs)

πcs
(1 − x2)s

+, where cs is the normalization constant for the fractional Laplacian in

dimension one and is given by cs := 22s
√
π

Γ( 1+2s
2 )

Γ(1−s) s, cf. for instance [1, Remark 3.11]. We refer to [9] for a
previous proof.

Theorem 3.2. Let N = 1 and vs(x) := sin(πs)
πcs

us(x), with us(x) := (1 − x2)s
+. Then vs is a C s([−1, 1])

solution of (3.1).
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Proof. For every x ∈ R \ (−1, 1), us(x) = 0. Moreover, for every x ∈ (−1, 1),

(−∆)sus(−x) = cs lim
ε→0+

∫
R\(−x−ε,−x+ε)

us(−x) − us(y)
| − x − y|1+2s dy

= cs lim
ε→0+

∫
R\(−x−ε,−x+ε)

us(x) − us(−y)
|x + y|1+2s dy

= cs lim
ε→0+

∫
R\(x−ε,x+ε)

us(x) − us(z)
|x − z|1+2s dz = (−∆)sus(x).

Now, let x ∈ (0, 1) and ε > 0, then∫
R\(x−ε,x+ε)

us(x) − us(y)
|x − y|1+2s dy =

∫ x−ε

−1

(1 − x2)s − (1 − y2)s

|x − y|1+2s dy

+

∫ 1

x+ε

(1 − x2)s − (1 − y2)s

|x − y|1+2s dy

+ (1 − x2)s
∫
R\(−1,1)

1
|x − y|1+2s dy =: I1(x) + I2(x) + I3(x).

As for the last integral, we immediately get

I3(x)
(1 − x2)s =

1
x1+2s

(∫ −1

−∞

1
|1 − y/x|1+2s dy +

∫ ∞

1

1
|1 − y/x|1+2s dy

)
=

1
2sx2s

(1 +
1
x

)−2s

+

(
1
x
− 1

)−2s =
1
2s

[
1

(1 − x)2s +
1

(1 + x)2s

]
.

We manipulate and integrate by parts I1(x) to obtain

I1(x) = (1 − x2)s
∫ x−ε

−1

1
(x − y)1+2s dy −

∫ x−ε

−1

(1 − y2)s

(x − y)1+2s dy

=
(1 − x2)s

2s

(
1
ε2s −

1
(1 + x)2s

)
−

{
(1 − (x − ε)2)s

2sε2s +

∫ x−ε

−1

(1 − y2)s−1

(x − y)2s y dy
}
.

(3.2)

Similarly, for I2(x) we have

I2(x) = (1 − x2)s
∫ 1

x+ε

1
(y − x)1+2s dy −

∫ 1

x+ε

(1 − y2)s

(y − x)1+2s dy

=
(1 − x2)s

2s

(
1
ε2s −

1
(1 − x)2s

)
−

{
(1 − (x + ε)2)s

2sε2s −

∫ 1

x+ε

(1 − y2)s−1

(y − x)2s y dy
}
.

(3.3)

Now, it is straightforward to see that, as ε→ 0+,

(1 − (x − ε)2)s = (1 − x2)s +
2sx

(1 − x2)1−sε + O(ε2),

(1 − (x + ε)2)s = (1 − x2)s −
2sx

(1 − x2)1−sε + O(ε2).
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Thus, combining them with (3.2) and (3.3), we obtain as ε→ 0+

I1(x) = −
(1 − x2)s

2s(1 + x)2s −
ε1−2sx

(1 − x2)1−s −

∫ x−ε

−1

(1 − y2)s−1

(x − y)2s y dy + O(ε2(1−s))

and

I2(x) = −
(1 − x2)s

2s(1 − x)2s +
ε1−2sx

(1 − x2)1−s +

∫ 1

x+ε

(1 − y2)s−1

(y − x)2s y dy + O(ε2(1−s)).

Altogether, we have

(−∆)sus(x) = cs lim
ε→0+

(I1(x) + I2(x) + I3(x))

= cs lim
ε→0+

(
−

∫ x−ε

−1

(1 − y2)s−1

(x − y)2s y dy +

∫ 1

x+ε

(1 − y2)s−1

(y − x)2s y dy + O(ε2(1−s))
)
.

(3.4)

Now, we distinguish two cases depending on whether s ∈ (0, 1
2 ) or s ∈ [1

2 , 1).
• Case s ∈ (0, 1

2 ). In this case, all integrals involved in the fractional Laplacian of us are convergent.
So, in this case, we have

(−∆)sus(x) = cs

(
−

∫ x

−1

(1 − y2)s−1

(x − y)2s y dy +

∫ 1

x

(1 − y2)s−1

(y − x)2s y dy
)
.

Now, by the following change of variable t =
x−y

1−xy , we have

∫ x

−1

(1 − y2)s−1

(x − y)2s y dy = −
1

(1 − x2)2s−1

∫ 1

0

(x − t)((1 − tx)2 − (x − t)2)s−1

t2s(1 − tx)
dt

=
1

(1 − x2)2s−1

∫ 1

0

(t − x)[(1 − t2)(1 − x2)]s−1

t2s(1 − tx)
dt

=
1

(1 − x2)s

∫ 1

0

(t − x)(1 − t2)s−1

t2s(1 − tx)
dt

and similarly ∫ 1

x

(1 − y2)s−1

(y − x)2s y dy =
1

(1 − x2)s

∫ 0

−1

(x − t)(1 − t2)s−1

t2s(1 − tx)
dt

=
1

(1 − x2)s

∫ 1

0

(x + t)(1 − t2)s−1

t2s(1 + tx)
dt.

So that, summing up, we have

(−∆)sus(x) =
cs

(1 − x2)s

∫ 1

0

(1 − t2)s−1

t2s

[ t − x
1 − tx

+
t + x
1 + tx

]
dt

= 2cs(1 − x2)1−s
∫ 1

0

(1 − t2)s−1

t2s−1(1 − t2x2)
dt.
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We can now integrate using power series to get

(−∆)sus(x) = 2cs(1 − x2)1−s
∫ 1

0

(1 − t2)s−1

t2s−1

∞∑
k=0

(tx)2kdt

= 2cs(1 − x2)1−s
∞∑

k=0

(
x2k

∫ 1

0

(1 − t2)s−1

t2s−1−2k dt
)

= 2cs(1 − x2)1−s
∞∑

k=0

(
x2k Γ(s)Γ(k − s + 1)

2Γ(k + 1)

)
= csΓ(s)Γ(1 − s)(1 − x2)1−s

∞∑
k=0

(−1)k

(
s − 1

k

)
x2k

= csΓ(s)Γ(1 − s)(1 − x2)1−s(1 − x2)s−1 = csΓ(s)Γ(1 − s) = cs
π

sin sπ

where we have calculated the integral
∫ 1

0
(1−t2)s−1

t2s−1−2k dt using the change of variables τ = t2, dt = 1
2
√
τdτ , the

definition of the Beta function, and the relation between the Beta and the Gamma functions B(x, y) =
Γ(x)Γ(y)
Γ(x+y) , and we have used that Γ(k + 1) = k!, the following property of the Gamma function (cf. for

instance [20, formula (1.47)]), with z = 1 − s:

Γ(z + k)
Γ(z)

= (z)k for z > −k, z , 0,−1,−2, . . . ,

the relation between definition of the Pochhammer symbol and the binomial coefficient (cf. for
instance [20, formula (1.48)]) (

−z
k

)
=

(−1)k(z)k

k!
,

and finally that Γ(s)Γ(1 − s) = π
sin sπ . The conclusion, in this case, follows at once for vs, using the

linearity of the fractional Laplacian.
• Case s ∈ [ 1

2 , 1). In this case, the situation is technically more involved because, when considered
individually, the integrals that appear in (3.4) are not convergent and one has to take carefully into
account the cancellations. Using the change of variables t := x−y

1−xy , we get

−

∫ x−ε

−1

(1 − y2)s−1

(x − y)2s y dy =
1

(1 − x2)s

∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s−1(1 − tx)
dt − x

∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s(1 − tx)
dt

 ,
where the first integral on the right-hand side is convergent as ε→ 0+. Similarly,

∫ 1

x+ε

(1 − y2)s−1

(y − x)2s y dy =
1

(1 − x2)s

∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s−1(1 + tx)
dt + x

∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s(1 + tx)
dt

 ,
where, again, the first integral on the right-hand side is convergent as ε → 0+. Therefore, (3.4) can be
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re-written in the form

(−∆)sus(x) =
cs

(1 − x2)s

∫ 1

0

(1 − t2)s−1

t2s−1

(
1

1 − tx
+

1
1 + tx

)
dt

+
csx

(1 − x2)s lim
ε→0+


∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s(1 + tx)
dt −

∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s(1 − tx)
dt + O(ε2(1−s))


= : J1(x) + J2(x).

As for J1(x) one can integrate using power series as already done in the case s < 1/2 and obtain

J1(x) =
2cs

(1 + x2)s

∫ 1

0

(1 − t2)s−1

t2s−1

∞∑
k=0

(tx)2kdt =
2cs

(1 + x2)s

∞∑
k=0

(
x2k

∫ 1

0

(1 − t2)s−1

t2s−1−2k dt
)

= cs
Γ(s)Γ(1 − s)

1 − x2 .

We now consider J2(x). We use again power series to get for every ε > 0∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s

1
1 + tx

dt =

∞∑
k=0

(−1)kxk
∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s−k dt

and similarly ∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s

1
1 − tx

dt =

∞∑
k=0

xk
∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s−k dt.

We observe that the integrals in the series are all convergent as ε → 0+ except for the first ones,
where k = 0. So, we isolate these first terms and calculate, for every ε > 0:∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s(1 + tx)
dt −

∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s(1 − tx)
dt

=

∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s dt −
∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s dt

+

∞∑
k=1

(−1)k
∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s−k dt −
∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s−k dt

 xk

Now, let F(t) be a primitive of f (t) := (1−t2)s−1

t2s , then clearly∫ 1

ε
1−x(x+ε)

f (t)dt −
∫ 1

ε
1−x(x−ε)

f (t)dt = F
(

ε

1 − x(x − ε)

)
− F

(
ε

1 − x(x + ε)

)
. (3.5)

Such a primitive can be expressed in terms of the hypergeometric function 2F1 as follows:

F(t) =
t1−2s

2F1( 1
2 − s, 1 − s, 3

2 − s; t2)
1 − 2s

=
t1−2s

1 − 2s

(
1 + O(t2)

)
as t → 0.
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Inserting this expansion in (3.5), by straightforward calculations we get∫ 1

ε
1−x(x+ε)

f (t)dt −
∫ 1

ε
1−x(x−ε)

f (t)dt = −2x
(

ε

1 − x2

)2−2s
+ o(ε2−2s) = O(ε2(1−s)).

In particular, limε→0+

( ∫ 1
ε

1−x(x+ε)
f (t)dt −

∫ 1
ε

1−x(x−ε)
f (t)dt

)
is finite. Moreover, we show below that it is finite

also the sum of the following series
∞∑

k=1

lim
ε→0+

(−1)k
∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s−k dt −
∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s−k dt

 xk

=

∞∑
k=1

((−1)k − 1)xk
∫ 1

0

(1 − t2)s−1

t2s−k dt =
Γ(s)

2

∞∑
k=0

((−1)k+1 − 1)xk+1
Γ
(

k−2s+2
2

)
Γ
(

k+2
2

)
=

Γ(s)
2

x
∞∑

k=0

(−2)x2k
Γ
(

2k−2s+2
2

)
Γ
(

2k+2
2

) = −Γ(s)x
∞∑

k=0

x2k Γ(k − s + 1)
Γ(k + 1)

= −Γ(s)Γ(1 − s)x
∞∑

k=0

(
s − 1

k

)
(−1)kx2k,

where we have calculated the integral
∫ 1

0
(1−t2)s−1

t2s−k dt using the change of variables τ = t2, dt = 1
2
√
τdτ , the

definition of the Beta function, and the relation between the Beta and the Gamma functions, and we
have used the sum of the series

∑∞
k=0 x2k Γ(k−s+1)

Γ(k+1) already calculated for the case s < 1/2. Therefore, it is
possible to pass to the limit as ε→ 0+ in the expression of J2(x) under the series, to get altogether,

J2(x) =
csx

(1 − x2)s lim
ε→0+


∫ 1

ε
1−x(x+ε)

(1 − t2)s−1

t2s(1 + tx)
dt −

∫ 1

ε
1−x(x−ε)

(1 − t2)s−1

t2s(1 − tx)
dt + O(ε2(1−s))


=

csx
(1 − x2)s

 lim
ε→0+

(
O(ε2(1−s))

)
+

∞∑
k=1

((−1)k − 1)xk
∫ 1

0

(1 − t2)s−1

t2s−k dt


= −csΓ(s)Γ(1 − s)

x2

(1 − x2)s

∞∑
k=0

(
s − 1

k

)
(−1)kx2k

= −csΓ(s)Γ(1 − s)
x2

(1 − x2)s (1 − x2)s−1 = −csΓ(s)Γ(1 − s)
x2

(1 − x2)
.

In conclusion,

(−∆)su(x) = J1(x) + J2(x) = cs
Γ(s)Γ(1 − s)

1 − x2 − csΓ(s)Γ(1 − s)
x2

(1 − x2)
= csΓ(s)Γ(1 − s),

which proves the thesis also in this case. �

4. The fractional p-Laplacian of (1 − |x|
p

p−1 )s
+. Preliminaries.

Let s ∈ (0, 1), p > 1, and denote by

us,p(x) := (1 − |x|m)s
+, m :=

p
p − 1

.
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Having in mind that, for p = 2, the fractional Laplacian of us,2(x) = (1−|x|2)s
+ is constant in (−1, 1), see

for instance Section 3, and that −∆p(1− |x|
p

p−1 ) is constant in (−1, 1), see for instance [6], it is tempting
to conjecture that also (−∆p)sus,p is constant in (−1, 1). In the next section we verify numerically that
this conjecture is false.

To this aim, we first prove in this section some preliminary results.

Proposition 4.1. For every s ∈ (0, 1) and p > 1, us,p ∈ W s,p(R).

Proof. Clearly, us,p(x) = (1 − |x|
p

p−1 )s
+ ∈ Lp(R). To prove that us,p ∈ W s,p(R), we need to show that

I :=
∫
R

∫
R

|us,p(x)−us,p(y)|p

|x−y|1+sp dx dy < ∞. We write the integral under consideration as follows:

I = 2
∫
R\(−1,1)

(∫ 1

−1

(1 − |y|m)sp

|x − y|1+sp dy
)

dx +

∫ 1

−1

(∫ 1

−1

|(1 − |x|m)s − (1 − |y|m)s|
p

|x − y|1+sp dy
)

dx

=: 2I1 + I2.

The integral I1 is convergent. Indeed, arguing as for the integral I3(x) in the proof of Theorem 3.2, we
get

I1 =
1
sp

∫ 1

−1

(
1

(1 + y)sp +
1

(1 − y)sp

)
(1 − |y|m)spdy.

Moreover, (1−ym)sp

(1−y)sp ∼ msp as y → 1, and similarly, (1−|y|m)sp

(1+y)sp is bounded in a neighborhood of y = −1. To
study the convergence of the integral I2, it is more convenient to change variable and put t =

x−y
1−xy in the

inner integral, to get

I2 =

∫ 1

−1

(∫ 1

−1

∣∣∣∣∣∣(1 − |x|m)s −

(
1 −

∣∣∣∣∣ x − t
1 − tx

∣∣∣∣∣m)s∣∣∣∣∣∣p 1
|t|1+sp(1 − tx)1−sp dt

)
1

(1 − x2)sp dx.

Now, as t → 1, the integrand of the inner integral has the following asymptotics∣∣∣∣(1 − |x|m)s −
(
1 −

∣∣∣ x−t
1−tx

∣∣∣m)s∣∣∣∣p
|t|1+sp(1 − tx)1−sp ∼

(1 − |x|m)sp

(1 − x)1−sp

and so, for t ∈ (1 − ε, 1), I2 has the same behavior of∫ 1

−1

(1 − |x|m)sp

(1 − x)1−sp(1 − x2)sp dx,

which, in view of the fact that

1 − |x|m =

m(x + 1) + o(x + 1) as x→ −1,
m(1 − x) + o(x − 1) as x→ 1,

(4.1)

is convergent.
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On the other side, as t → 0,
x − t

1 − tx
= (x − t)(1 + tx + o(t)) = x − t(1 − x2) + o(t)∣∣∣∣∣ x − t

1 − tx

∣∣∣∣∣m = |x − t(1 − x2) + o(t)|m = |x|m(1 − m
1 − x2

x
t + o(t))(

1 −
∣∣∣∣∣ x − t
1 − tx

∣∣∣∣∣m)s

= (1 − |x|m)s

(
1 + ms

|x|m(1 − x2)
x(1 − |x|m)

t + o(t)
)

∣∣∣∣∣∣(1 − |x|m)s −

(
1 −

∣∣∣∣∣ x − t
1 − tx

∣∣∣∣∣m)s∣∣∣∣∣∣α ∼ (1 − |x|m)sα(ms)α
|x|(m−1)α(1 − x2)α

(1 − |x|m)α
|t|α,

(4.2)

for any α > 0. Therefore, the integrand of the inner integral (in dt) of I2 has the following asymptotics
as t → 0 ∣∣∣∣(1 − |x|m)s −

(
1 −

∣∣∣ x−t
1−tx

∣∣∣m)s∣∣∣∣p
|t|1+sp(1 − tx)1−sp ∼ (1 − |x|m)sp(ms)p |x|

(m−1)p(1 − x2)p

(1 − |x|m)p

1
|t|1−p(1−s) ,

and so the integral in dt is convergent. Finally, for t in a neighborhood of 0, I2 has the same behavior
of ∫ 1

−1

|x|(m−1)p(1 − x2)p(1−s)

(1 − |x|m)p(1−s) dx,

which again in view of (4.1) converges. �

Remark 4.2. Arguing as in the first part of the proof of Theorem 3.2, for the fractional p-Laplacian of
us,p = (1 − |x|m)s

+, it is possible to calculate explicitly its value at x = 0. Indeed, denoting by cs,p the
normalization constant involved in the definition of the fractional p-Laplacian in dimension 1, we get
for every x ∈ (−1, 1)

(−∆p)sus,p(x)
cs,p

= |us,p(x)|p−2us,p(x)
∫
R\(−1,1)

1
|x − y|1+sp dy

+ lim
ε→0+

∫
(−1,1)\(−ε,ε)

|us,p(x) − us,p(y)|p−2(us,p(x) − us,p(y))
|x − y|1+sp dy

= us,p(x)p−1
(∫ −1

−∞

1
|x − y|1+sp dy +

∫ ∞

1

1
|x − y|1+sp dy

)
+ lim

ε→0+

∫
(−1,1)\(−ε,ε)

|us,p(x) − us,p(y)|p−2(us,p(x) − us,p(y))
|x − y|1+sp dy

=
(1 − |x|m)s(p−1)

sp

(
1

(1 + x)sp +
1

(1 − x)sp

)
+ lim

ε→0+

∫
(−1,1)\(−ε,ε)

|us,p(x) − us,p(y)|p−2(us,p(x) − us,p(y))
|x − y|1+sp dy.

At x = 0, the previous expression becomes

(−∆p)sus,p(0)
cs,p

=
2
sp

+ lim
ε→0+

∫
(−1,1)\(−ε,ε)

(1 − (1 − |y|m)s)p−1

|y|1+sp dy

=
2
sp

+ 2
∫ 1

0

(1 − (1 − ym)s)p−1

y1+sp dy,
(4.3)
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where the integral on the last line is meant in the generalized sense, it is convergent and, at least for
some values of s and p, can be explicitly expressed in terms of special functions. The value in (4.3)
can be taken as reference value for the numerical analysis.

Proposition 4.3. For every p > 1, s ∈ (0, 1 − 1/p), and for every x ∈ (−1, 1), the function

gx(y) :=
|us,p(x) − us,p(y)|p−2(us,p(x) − us,p(y))

|x − y|1+sp (4.4)

has finite integral over (−1, 1). Moreover, if 2− p(1− s) < 0, gx belongs to the space Wr,q(R) whenever
q ≥ 1 and 0 ≤ r < min{1, p(1 − s) − 2}.

Proof. Fix any x ∈ (−1, 1). Via the usual change of variable t =
x−y

1−xy , we get

∫ 1

−1
gx(y)dy =

∫ 1

−1

∣∣∣∣(1 − |x|m)s −
(
1 −

∣∣∣ x−t
1−tx

∣∣∣m)s∣∣∣∣p−2 [
(1 − |x|m)s −

(
1 −

∣∣∣ x−t
1−tx

∣∣∣m)s]
|t|1+sp

(
1−x2

1−tx

)sp dt

=:
∫ 1

−1
fx(t)dt.

Using (4.2), with α = p − 2, we have that fx(t) ∼ c(x) |t|
p−2t
|t|1+sp as t → 0, and so the integral is finite. Now,

in order to prove the last part of the statement, we write∫
R

|gx(y)|qdy =

∫
R\(−1,1)

(1 − |x|m)s(p−1)q

|x − y|(1+sp)q dy +

∫ 1

−1
|gx(y)|qdy.

The first integral in the sum is finite, being x ∈ (−1, 1) fixed, and y < (−1, 1). Concerning the second
one, we re-write it arguing as in the first part of this proof∫ 1

−1
|gx(y)|qdy =

∫ 1

−1
| fx(t)|qdt,

and use that | fx(t)|q ∼
c(x)q

|t|(1+sp−(p−1))q as t → 0, to conclude that gx(y) ∈ Lq(R) whenever (2− p(1− s))q < 1.
In particular, gx(y) ∈ Lq(R) for every q ≥ 1, if 2− p(1− s) < 0. We need to show now that the following
integral is finite∫

R

∫
R

|gx(y) − gx(z)|q

|y − z|1+rq dy dz =

∫
R\(−1,1)

∫
R\(−1,1)

. . . dy dz + 2
∫
R\(−1,1)

∫ 1

−1
. . . dy dz

+

∫ 1

−1

∫ 1

−1
. . . dy dz =: I1 + 2I2 + I3

for some r. To this aim, we observe that the most singular case is when y, z ∈ (−1, 1), and both y → x
and z→ x. Therefore, we restrict the study only to the last integral in the sum above:

I3 =

∫ x

−1

(∫ 1

−1

|gx(y) − gx(z)|q

|y − z|1+rq dy
)

dz +

∫ 1

x

(∫ 1

−1

|gx(y) − gx(z)|q

|y − z|1+rq dy
)

dz. (4.5)
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We consider the first inner integral in dy. For every z ∈ (−1, x) fixed, and y→ x:

gx(y) ∼ sgn(x)
(

ms|x|m−1

(1 − |x|m)1−s

)p−1
|y − x|p−2(y − x)
|y − x|1+sp =: c(x)sgn(y − x)|y − x|p(1−s)−2, (4.6)

and so, being 2 − p(1 − s) < 0,

|gx(y) − gx(z)|q

|y − z|1+rq ∼
|gx(z)|q

|x − z|1+rq as y→ x.

Thus, integrating now in dz, we have that the integral
∫ x

−1

(∫ 1

−1
|gx(y)−gx(z)|q

|y−z|1+rq dy
)

dz has the same behavior of∫ x

−1

|gx(z)|q

|x − z|1+rq dz.

Now, like in (4.6), as z→ x,

|gx(z)|q

|x − z|1+rq ∼
|c(x)sgn(z − x)|z − x|p(1−s)−2|q

|x − z|1+rq =
|c(x)|q

|x − z|1+rq+(2−p(1−s))q .

Hence, the first double integral in (4.5) is convergent, being 1 + rq + (2− p(1− s))q < 1 by assumption.
The proof of the convergence of the second integral is similar and we omit it. �

5. Numerical investigation

In this Section we show that ∃ p > 2 and ∃ s ∈ (0, 1) such that (1.2) is not constant in (−1, 1). To
this aim it is sufficient to show that

I(s,p)(x) = lim
ε→0

∫
(Bε(x))c

gx(y)dy (5.1)

is not constant, where gx is the function defined in (4.4). We will limit ourselves to provide numerical
evidence to this statement.

For sake of clearness, we omit now the indices s and p in I(s,p)(x), noticing that the approximations
we are going to present are valid for any s and p for which I(x) = I(s,p)(x) is finite. Then we split
I(x) = I(s,p)(x) into the sum of six contributions as follows:

I(x) =

∫ −1

−∞

gx(y)dy︸      ︷︷      ︸
I1(x)

+

∫ x−δ

−1
gx(y)dy︸       ︷︷       ︸
I2(x)

+

∫ x

x−δ
gx(y)dy︸      ︷︷      ︸
I3(x)

+

∫ x+δ

x
gx(y)dy︸       ︷︷       ︸
I4(x)

+

∫ 1

x+δ

gx(y)dy︸      ︷︷      ︸
I5(x)

+

∫ +∞

1
gx(y)dy︸       ︷︷       ︸
I6(x)

, (5.2)

where δ > 0 will be specified later.
The most challenging integrals to compute are I3(x) and I4(x) because of the presence of the

singularity of gx(y) at y = x.
From now on, we denote by Ĩk(x) the numerical approximation of the integral Ik(x) for k = 1, . . . , 6.
The integrals I1(x) and I6(x) are approximated by an adaptive quadrature formula implemented

in the functions integral and quadva of MATLAB [21], after operating a change of variable that
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transforms them to integrals on a finite interval with a very mild singularity. The approximated integrals
Ĩ1(x) and Ĩ6(x) are computed by ensuring that

|Ik(x) − Ĩk(x)| ≤ 10−15 for k ∈ {1, 6}. (5.3)

Since we are performing our computations with double-precision arithmetic for which the machine
precision is about 10−16, the tolerance of 10−15 in (5.3) is fully satisfactory.

The approximate integrals Ĩ2(x), . . . , Ĩ5(x) are computed by the Gauss–Legendre quadrature formula
using (n + 1) nodes (see, e.g., [2, (2.3.10)]). To highlight the dependence of the computed integrals on
the number of nodes, we use the notation Ĩk,n(x) instead of Ĩk(x), for k ∈ {2, 3, 4, 5}.

For what concerns the numerical error of the Gauss–Legendre quadrature formula, it is possible to
prove that there exists a positive constant C only depending on the size of the integration interval such
that, for k = 2, . . . , 5 and for any x ∈ (−1, 1), it holds

|Ik(x) − Ĩk,n(x)| ≤ Cn−σ‖gx‖Wσ,2(Λk), (5.4)

provided that gx ∈ Wσ,2(Λk) for some σ > 1/2 and where Λk denotes the integration interval of the
integral Ik(x). The proof of (5.4) follows by applying the estimate (5.3.4a) of [2] and the estimate (3.7)
of [3] with Legendre weight w(y) ≡ 1.

Then, thanks to the estimates (5.3) and (5.4), it holds that the global approximated integral

Ĩ(x) =

6∑
k=1

Ĩk(x) (5.5)

satisfies the estimate
|I(x) − Ĩ(x)| ≤ cn−σ‖gx‖Wσ,2(Λk) + 10−15, (5.6)

i.e., Ĩ(x) converges to the exact value I(x) when n → ∞, for any x ∈ (−1, 1) up to the tolerance
ε = 10−15.

To get it, it is sufficient to take a number (n + 1) of quadrature nodes sufficiently large to guarantee
that the error |I(x) − Ĩ(x)| be small enough. Since the value of I(x) is unknown when p , 2, but it is
known when p = 2, we take the case p = 2 as a playground to learn how many quadrature nodes we
need to consider in order to approximate I(x) with the desired accuracy.

Let us now resume the original notation of I(s,p)(x) because we are interested in distinguishing what
happens for different values of p and s.

All the numerical results that will be reported in the next sections were obtained using the MATLAB
functions available on the github repository [11].

5.1. The case p = 2

When p = 2 we know that (see the proof of Theorem 3.2)

I(s,2)(x) =
π

sin(πs)
. (5.7)

In Figure 1, left, we plot the values Ĩ(s,2)(x) , for several values of x ∈ (−1, 1) and for
s ∈ {0.2, 0.4, 0.5, 0.583}. We have chosen δ = 1/50 in (5.2). Numerical results are fully consistent
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with the theoretical result reported in (5.7), the values π
sin(πs) are represented by the empty squares

(only in correspondence of x = 0).
In Figure 1, right, we report the absolute errors |I(s,2)(x) − Ĩ(s,2)(x)| for several values of x ∈ (−1, 1).

When s = 0.2, s = 0.4, and s = 0.5, the errors are all below 5 · 10−7. Instead, when s = 0.583, the
errors are about 10−6 in the middle of the interval and reach the value 10−4 when |x| tends to 1. We
explain this behavior to the fact that when s → 1−, the order of infinity of the function gx(y) at y = x
increases and the computation of the corresponding integral is very demanding.
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Figure 1. On the left, the approximated integrals Ĩ(s,2)(x), the empty squares at x = 0
represent the values (5.7). On the right, the absolute errors |I(s,2)(x) − Ĩ(s,2)(x)|.

In Figure 2 we show the behavior of the errors |I(s,2)(x) − Ĩ(s,2)(x)| versus n, and for different values
of s, at x = 0 (left) and x = 0.5 (right).
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Figure 2. The absolute errors |I(s,2)(x)− Ĩ(s,2)(x)| versus n for different values of s. On the left
at x = 0, on the right at x = 0.5.

When p = 2 there is no value of s > 1/2 for which we know that gx ∈ W s,2(R) (see Proposition 4.3),
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hence we cannot take advantage of the estimate (5.4). Yet, we observe that the errors for all the values
of s decrease when n grows up, showing convergence of the approximated integrals to the exact ones.
The value n = 256 provides very satisfactory results: all the errors are lower than 10−6. Moreover, we
can conclude that the accuracy of the quadrature formula at x = 0 and x = 0.5 is almost the same for n
ranging between 64 and 256.

5.2. The case p , 2

So far, we have tested the accuracy of our quadrature formulas; now we can move to the case p , 2,
for which we only know the exact value of the integral I(s,p)(x) when x = 0. As a matter of fact, we
have (see (4.3))

I(s,p)(0) =
2
sp

+ 2
∫ 1

0

(1 − (1 − ym)s)p−1

y1+sp dy (5.8)

and we have computed it symbolically by Wolfram Mathematica [22].
In Figure 3, left, we report the values of I(s,p)(x) when p = 3, for five values of s and different

values of x ∈ (−1, 1). Clearly, I(s,p)(x) is not constant in (−1, 1). The square symbols at x = 0 represent
the exact values (5.8). In the right picture of Figure 3 we display the errors |I(s,3)(0) − Ĩ(s,3)(0)| for five
values of s versus the parameter n (related to the number of quadrature nodes). When n increases all the
errors decrease with rate comparable with that for the case p = 2 (see Figure 2). Then we expect that
the same accuracy occurs in correspondence to other points x , 0 that stand sufficiently far from the
end-points of the interval (−1, 1). Differently than for the case p = 2, here we have reported numerical
results also for s = 2/15, so that gx ∈ Wr,2(R) with r = 0.6, and for which the estimate (5.4) holds.
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Figure 3. On the left, the approximated integrals Ĩ(s,3)(x). The empty squares at x = 0
represent the exact values (5.8). On the right, the absolute errors |I(s,3)(x) − Ĩ(s,3)(x)| at x = 0.
The numerical integrals are evaluated using (n + 1) nodes.

Similar results, but now for p = 4, are shown in Figure 4: on the left, we report the values of I(s,4)(x)
for four values of s and different values of x ∈ (−1, 1). Also in this case it is evident that I(s,4)(x) is not
constant in (−1, 1). The square symbols at x = 0 refer to the exact values (5.8). In the right picture of
Figure 4 we show the errors |I(s,4)(0) − Ĩ(s,4)(0)| for four values of s versus the parameter n (related to
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the number of quadrature nodes). Similar conclusions made for p = 3 can be drawn for p = 4, too.

Bearing in mind that when p = 2 the errors at x = 0 and x = 0.5 were substantially the same, for a
fixed value of s, we can conclude that also when p > 2 the accuracy in approximating the integrals at
x , 0 is comparable to that obtained at x = 0. Moreover, we observe that, for a fixed s, the regularity
of gx(y) increases with p and this allows us to benefit of the greater convergence order in the estimate
(5.4). This implies that, when p > 2, we can expect that the approximated integrals are at least accurate
as those for p = 2.
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Figure 4. On the left, the approximated integrals Ĩ(s,4)(x). The empty squares at x = 0
represent the exact values (5.8). On the right, the absolute errors |I(s,4)(x) − Ĩ(s,4)(x)| at x = 0.
The numerical integrals are evaluated using (n + 1) nodes.

In conclusion, in Table 1 we report the approximated values Ĩ(s,p)(x) for p = 3 and p = 4, for
some values of s and at the two points x = 0 and x = 0.5. Because these values approximate the
corresponding exact values with errors lower than about 10−6, we can state once more that ∃ p , 2 and
∃ s ∈ (0, 1) such that I(s,p) is not constant in (−1, 1).

Table 1. The values of Ĩ(s,p)(0) and Ĩ(s,p)(0.5) for some values of s, computed with the formula
(5.5) and n = 256. On the left p = 3, on the right p = 4. These values approximate the
corresponding exact values with errors lower than 5 · 10−5.

s Ĩ(s,3)(0) Ĩ(s,3)(0.5)

0.13 5.0446 4.8644
0.20 3.4253 3.2945
0.40 1.9911 2.0046
0.50 1.8484 1.9451
0.583 1.8891 2.0702

s Ĩ(s,4)(0) Ĩ(s,4)(0.5)

0.13 3.7625 3.4608
0.20 2.5335 2.3025
0.40 1.4166 1.3743
0.50 1.2876 1.3469
0.583 1.2962 1.4584
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1. X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum
principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014),
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