We prove regularity of solutions of the ∂¯ -problem in the Hölder–Zygmund spaces of bounded, strongly C-linearly convex domains of class C1 , 1. The proofs rely on a new analytic characterization of said domains which is of independent interest, and on techniques that were recently developed by the first-named author to prove estimates for the ∂¯ -problem on strongly pseudoconvex domains of class C2.

Regularity of a ∂¯ -Solution Operator for Strongly C -Linearly Convex Domains with Minimal Smoothness

Lanzani L.
2021

Abstract

We prove regularity of solutions of the ∂¯ -problem in the Hölder–Zygmund spaces of bounded, strongly C-linearly convex domains of class C1 , 1. The proofs rely on a new analytic characterization of said domains which is of independent interest, and on techniques that were recently developed by the first-named author to prove estimates for the ∂¯ -problem on strongly pseudoconvex domains of class C2.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/873495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact