In this paper, a time-varying chattering-free disturbance observer-based position tracking control law of serial robotic manipulators is presented to track a reference signal in a finite time. The key idea is to employ a positive-increasing function associated with the control/observer objectives to improve the control performance. First, the model of an uncertain robotic manipulator is presented as the case study of the proposed strategy. Then, the time-varying form of the robotic manipulator model is obtained to provide finite-time boundedness using the first-order sliding mode method. Moreover, without any knowledge about the upper bounds of the uncertainties, a reduced-order observer is presented to estimate the uncertainties in a finite time. Subsequently, a disturbance observer-based finite-time position tracking control law is designed. The time-varying gains are provided to converge the position tracking error to a neighborhood of zero in a finite time. Finally, comparative simulations are presented to show the effectiveness of the proposed scheme compared to other existing strategies.
Razmjooei H., Shafiei M.H., Palli G., Arefi M.M. (2022). Non-linear Finite-Time Tracking Control of Uncertain Robotic Manipulators Using Time-Varying Disturbance Observer-Based Sliding Mode Method. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 104(2), 1-13 [10.1007/s10846-022-01571-x].
Non-linear Finite-Time Tracking Control of Uncertain Robotic Manipulators Using Time-Varying Disturbance Observer-Based Sliding Mode Method
Razmjooei H.
;Palli G.;
2022
Abstract
In this paper, a time-varying chattering-free disturbance observer-based position tracking control law of serial robotic manipulators is presented to track a reference signal in a finite time. The key idea is to employ a positive-increasing function associated with the control/observer objectives to improve the control performance. First, the model of an uncertain robotic manipulator is presented as the case study of the proposed strategy. Then, the time-varying form of the robotic manipulator model is obtained to provide finite-time boundedness using the first-order sliding mode method. Moreover, without any knowledge about the upper bounds of the uncertainties, a reduced-order observer is presented to estimate the uncertainties in a finite time. Subsequently, a disturbance observer-based finite-time position tracking control law is designed. The time-varying gains are provided to converge the position tracking error to a neighborhood of zero in a finite time. Finally, comparative simulations are presented to show the effectiveness of the proposed scheme compared to other existing strategies.File | Dimensione | Formato | |
---|---|---|---|
s10846-022-01571-x.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.