In this article, we consider a network of processors aiming at cooperatively solving mixed-integer convex programs subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under asynchronous, unreliable, and directed communication. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: 1) A verification in which they check - in a randomized fashion - the robust feasibility of a candidate optimal point, and 2) an optimization step in which they exchange their candidate basis (the minimal set of constraints defining a solution) with neighbors and locally solve an optimization problem. As a main result, we show that processors can stop the algorithm after a finite number of communication rounds (either because verification has been successful for a sufficient number of rounds or because a given threshold has been reached) so that candidate optimal solutions are consensual. The common solution has proven to be - with high confidence - feasible and, hence, optimal for the entire set of uncertainty except a subset having an arbitrarily small probability measure. We show the effectiveness of the proposed distributed algorithm using two examples: a random, uncertain mixed-integer linear program and a distributed localization in wireless sensor networks. The distributed algorithm is implemented on a multicore platform in which the nodes communicate asynchronously.
Chamanbaz M., Notarstefano G., Sasso F., Bouffanais R. (2021). Randomized constraints consensus for distributed robust mixed-integer programming. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 8(1), 295-306 [10.1109/TCNS.2020.3024483].
Randomized constraints consensus for distributed robust mixed-integer programming
Notarstefano G.;
2021
Abstract
In this article, we consider a network of processors aiming at cooperatively solving mixed-integer convex programs subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under asynchronous, unreliable, and directed communication. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: 1) A verification in which they check - in a randomized fashion - the robust feasibility of a candidate optimal point, and 2) an optimization step in which they exchange their candidate basis (the minimal set of constraints defining a solution) with neighbors and locally solve an optimization problem. As a main result, we show that processors can stop the algorithm after a finite number of communication rounds (either because verification has been successful for a sufficient number of rounds or because a given threshold has been reached) so that candidate optimal solutions are consensual. The common solution has proven to be - with high confidence - feasible and, hence, optimal for the entire set of uncertainty except a subset having an arbitrarily small probability measure. We show the effectiveness of the proposed distributed algorithm using two examples: a random, uncertain mixed-integer linear program and a distributed localization in wireless sensor networks. The distributed algorithm is implemented on a multicore platform in which the nodes communicate asynchronously.File | Dimensione | Formato | |
---|---|---|---|
870891_disclaimer.pdf
Open Access dal 18/03/2021
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.