The capacity of offloading data and control tasks to the network is becoming increasingly important, especially if we consider the faster growth of network speed when compared to CPU frequencies. In-network compute alleviates the host CPU load by running tasks directly in the network, enabling additional computation/communication overlap and potentially improving overall application performance. However, sustaining bandwidths provided by next-generation networks, e.g., 400 Gbit/s, can become a challenge. sPIN is a programming model for in-NIC compute, where users specify handler functions that are executed on the NIC, for each incoming packet belonging to a given message or flow. It enables a CUDA-like acceleration, where the NIC is equipped with lightweight processing elements that process network packets in parallel. We investigate the architectural specialties that a sPIN NIC should provide to enable high-performance, low-power, and flexible packet processing. We introduce PsPIN, a first open-source sPIN implementation, based on a multi-cluster RISC-V architecture and designed according to the identified architectural specialties. We investigate the performance of PsPIN with cycle-accurate simulations, showing that it can process packets at 400 Gbit/s for several use cases, introducing minimal latencies (26 ns for 64 B packets) and occupying a total area of 18.5 mm2 (22 nm FDSOI).

A RISC-V in-network accelerator for flexible high-performance low-power packet processing / Di Girolamo S.; Kurth A.; Calotoiu A.; Benz T.; Schneider T.; Beranek J.; Benini L.; Hoefler T.. - ELETTRONICO. - 2021-:(2021), pp. 958-971. (Intervento presentato al convegno 48th ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2021 tenutosi a esp nel 2021) [10.1109/ISCA52012.2021.00079].

A RISC-V in-network accelerator for flexible high-performance low-power packet processing

Benini L.;
2021

Abstract

The capacity of offloading data and control tasks to the network is becoming increasingly important, especially if we consider the faster growth of network speed when compared to CPU frequencies. In-network compute alleviates the host CPU load by running tasks directly in the network, enabling additional computation/communication overlap and potentially improving overall application performance. However, sustaining bandwidths provided by next-generation networks, e.g., 400 Gbit/s, can become a challenge. sPIN is a programming model for in-NIC compute, where users specify handler functions that are executed on the NIC, for each incoming packet belonging to a given message or flow. It enables a CUDA-like acceleration, where the NIC is equipped with lightweight processing elements that process network packets in parallel. We investigate the architectural specialties that a sPIN NIC should provide to enable high-performance, low-power, and flexible packet processing. We introduce PsPIN, a first open-source sPIN implementation, based on a multi-cluster RISC-V architecture and designed according to the identified architectural specialties. We investigate the performance of PsPIN with cycle-accurate simulations, showing that it can process packets at 400 Gbit/s for several use cases, introducing minimal latencies (26 ns for 64 B packets) and occupying a total area of 18.5 mm2 (22 nm FDSOI).
2021
Proceedings - International Symposium on Computer Architecture
958
971
A RISC-V in-network accelerator for flexible high-performance low-power packet processing / Di Girolamo S.; Kurth A.; Calotoiu A.; Benz T.; Schneider T.; Beranek J.; Benini L.; Hoefler T.. - ELETTRONICO. - 2021-:(2021), pp. 958-971. (Intervento presentato al convegno 48th ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2021 tenutosi a esp nel 2021) [10.1109/ISCA52012.2021.00079].
Di Girolamo S.; Kurth A.; Calotoiu A.; Benz T.; Schneider T.; Beranek J.; Benini L.; Hoefler T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/870466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 11
social impact