Smart vision-based IoT applications operate on a sub-mW power budget while requiring power-hungry always-on image processing capabilities. This work presents a system-on-chip (SoC) that enables hierarchical processing of face analysis under multiple sub-mW operating scenarios using two tightly coupled machine learning (ML) accelerators. A dynamically scalable binary decision tree (BDT) engine for face detection (FD) allows triggering a multi-precision convolutional neural network (CNN) engine for subsequent face recognition (FR). The 22nm SoC can therefore dynamically trade-off image analysis depth, frames-per-second (FPS), accuracy, and power consumption. It implements complete end-to-end edge processing, enabling always-on FD and FR within the tight 1mW power budget of a 55mm diameter indoor solar panel. The SoC achieves >2x improvement in energy efficiency at iso-accuracy and iso-FPS over state-of-the-art (SoA) systems.

Jokic P., Azarkhish E., Cattenoz R., Turetken E., Benini L., Emery S. (2021). A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge. Institute of Electrical and Electronics Engineers Inc. [10.23919/VLSICircuits52068.2021.9492401].

A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge

Azarkhish E.;Benini L.;
2021

Abstract

Smart vision-based IoT applications operate on a sub-mW power budget while requiring power-hungry always-on image processing capabilities. This work presents a system-on-chip (SoC) that enables hierarchical processing of face analysis under multiple sub-mW operating scenarios using two tightly coupled machine learning (ML) accelerators. A dynamically scalable binary decision tree (BDT) engine for face detection (FD) allows triggering a multi-precision convolutional neural network (CNN) engine for subsequent face recognition (FR). The 22nm SoC can therefore dynamically trade-off image analysis depth, frames-per-second (FPS), accuracy, and power consumption. It implements complete end-to-end edge processing, enabling always-on FD and FR within the tight 1mW power budget of a 55mm diameter indoor solar panel. The SoC achieves >2x improvement in energy efficiency at iso-accuracy and iso-FPS over state-of-the-art (SoA) systems.
2021
IEEE Symposium on VLSI Circuits, Digest of Technical Papers
1
2
Jokic P., Azarkhish E., Cattenoz R., Turetken E., Benini L., Emery S. (2021). A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge. Institute of Electrical and Electronics Engineers Inc. [10.23919/VLSICircuits52068.2021.9492401].
Jokic P.; Azarkhish E.; Cattenoz R.; Turetken E.; Benini L.; Emery S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/870464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact