Event-based cameras, also called dynamic vision sensors (DVS), inspired by the human vision system, are gaining popularity due to their potential energy-saving since they generate asynchronous events only from the pixels changes in the field of view. Unfortunately, in most current uses, data acquisition, processing, and streaming of data from event-based cameras are performed by power-hungry hardware, mainly high-power FPGAs. For this reason, the overall power consumption of an event-based system that includes digital capture and streaming of events, is in the order of hundreds of milliwatts or even watts, reducing significantly usability in real-life low-power applications such as wearable devices. This work presents FlyDVS, the first event-driven wireless ultra-low-power visual sensor node that includes a low-power Lattice FPGA and, a Bluetooth wireless system-on-chip, and hosts a commercial ultra-low-power DVS camera module. Experimental results show that the low-power FPGA can reach up to 874 efps (event-frames per second) with only 17.6mW of power, and the sensor node consumes an overall power of 35.5 mW (including wireless streaming) at 200 efps. We demonstrate FlyDVS in a real-life scenario, namely, to acquire event frames of a gesture recognition data set.
Titolo: | FlyDVS: An Event-Driven Wireless Ultra-Low Power Visual Sensor Node | |
Autore/i: | Di Mauro A.; Scherer M.; Mas J. F.; Bougenot B.; Magno M.; Benini L. | |
Autore/i Unibo: | ||
Anno: | 2021 | |
Serie: | ||
Titolo del libro: | Proceedings -Design, Automation and Test in Europe, DATE | |
Pagina iniziale: | 1851 | |
Pagina finale: | 1854 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.23919/DATE51398.2021.9474260 | |
Abstract: | Event-based cameras, also called dynamic vision sensors (DVS), inspired by the human vision system, are gaining popularity due to their potential energy-saving since they generate asynchronous events only from the pixels changes in the field of view. Unfortunately, in most current uses, data acquisition, processing, and streaming of data from event-based cameras are performed by power-hungry hardware, mainly high-power FPGAs. For this reason, the overall power consumption of an event-based system that includes digital capture and streaming of events, is in the order of hundreds of milliwatts or even watts, reducing significantly usability in real-life low-power applications such as wearable devices. This work presents FlyDVS, the first event-driven wireless ultra-low-power visual sensor node that includes a low-power Lattice FPGA and, a Bluetooth wireless system-on-chip, and hosts a commercial ultra-low-power DVS camera module. Experimental results show that the low-power FPGA can reach up to 874 efps (event-frames per second) with only 17.6mW of power, and the sensor node consumes an overall power of 35.5 mW (including wireless streaming) at 200 efps. We demonstrate FlyDVS in a real-life scenario, namely, to acquire event frames of a gesture recognition data set. | |
Data stato definitivo: | 26-feb-2022 | |
Appare nelle tipologie: | 4.01 Contributo in Atti di convegno |