Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf.

Lunardon A., Forestan C., Farinati S., Axtell M.J., Varotto S. (2016). Genome-wide characterization of maize small RNA loci and their regulation in the Required to maintain repression6-1 (Rmr6-1) mutant and long-term abiotic stresses. PLANT PHYSIOLOGY, 170(3), 1535-1548 [10.1104/pp.15.01205].

Genome-wide characterization of maize small RNA loci and their regulation in the Required to maintain repression6-1 (Rmr6-1) mutant and long-term abiotic stresses

Forestan C.
Secondo
;
2016

Abstract

Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf.
2016
Lunardon A., Forestan C., Farinati S., Axtell M.J., Varotto S. (2016). Genome-wide characterization of maize small RNA loci and their regulation in the Required to maintain repression6-1 (Rmr6-1) mutant and long-term abiotic stresses. PLANT PHYSIOLOGY, 170(3), 1535-1548 [10.1104/pp.15.01205].
Lunardon A.; Forestan C.; Farinati S.; Axtell M.J.; Varotto S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/868436
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact