We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence.
Titolo: | Mirror Symmetry and smoothing Gorenstein toric affine 3-folds | |
Autore/i: | Alessio Corti; Matej Filip; Andrea Petracci | |
Autore/i Unibo: | ||
Anno: | 2022 | |
Serie: | ||
Titolo del libro: | Facets of Algebraic Geometry: A Collection in Honor of William Fulton's 80th Birthday | |
Pagina iniziale: | 132 | |
Pagina finale: | 163 | |
Abstract: | We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence. | |
Data stato definitivo: | 24-feb-2022 | |
Appare nelle tipologie: | 2.01 Capitolo / saggio in libro |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.