We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence.

Alessio Corti, Matej Filip, Andrea Petracci (2022). Mirror Symmetry and smoothing Gorenstein toric affine 3-folds. Cambridge : Cambridge University Press [10.1017/9781108877831.005].

Mirror Symmetry and smoothing Gorenstein toric affine 3-folds

Andrea Petracci
2022

Abstract

We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence.
2022
Facets of Algebraic Geometry: A Collection in Honor of William Fulton's 80th Birthday
132
163
Alessio Corti, Matej Filip, Andrea Petracci (2022). Mirror Symmetry and smoothing Gorenstein toric affine 3-folds. Cambridge : Cambridge University Press [10.1017/9781108877831.005].
Alessio Corti; Matej Filip; Andrea Petracci
File in questo prodotto:
File Dimensione Formato  
Main_Corti_Filip_Petracci.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/865836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact