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Mirror Symmetry and Smoothing Gorenstein
toric affine 3-folds

Alessio Corti, Matej Filip and Andrea Petracci

Abstract

We state two conjectures that together allow one to describe the set of

smoothing components of a Gorenstein toric affine 3-fold in terms of a

combinatorially defined and easily studied set of Laurent polynomials

called 0-mutable polynomials. We explain the origin of the conjectures

in mirror symmetry and present some of the evidence.



2 A. Corti, M. Filip and A. Petracci

1.1 Introduction

We explore mirror symmetry for smoothings of a 3-dimensional Goren-

stein toric affine variety V . Specifically, we try to imagine what conse-

quences mirror symmetry may have for the classification of smoothing

components of the deformation space Def V . Conjecture A makes the

surprising statement that the set of smoothing components of Def V is

in bijective correspondence with a set of easily defined and enumerated

2-variable Laurent polynomials, called 0-mutable polynomials. Our Con-

jecture B — in the strong form stated in Remark 1.4.2 — asserts that

these smoothing components are themselves smooth, and computes their

tangent spaces from the corresponding 0-mutable polynomials.

As is customary in toric geometry, V is associated to a strictly con-

vex 3-dimensional rational polyhedral cone σ ⊆ NR, where N is a 3-

dimensional lattice; the Gorenstein condition means that the integral

generators of the rays of σ all lie on an integral affine hyperplane (u = 1)

for some u ∈M := HomZ(N,Z). We denote by F the convex hull of the

integral generators of the rays of σ, i.e.

F := σ ∩ (u = 1);

this is a lattice polygon (i.e. a lattice polytope of dimension 2) embedded

in the affine 2-dimensional lattice (u = 1). The isomorphism class of

the toric variety V depends only on the affine equivalence class of the

polygon F .

If V has an isolated singularity, then Def V is finite dimensional and we

know from the work of Altmann [4] that there is a 1-to-1 correspondence

between the set of irreducible components of Def V and integral max-

imal Minkowski decompositions of F . Altmann also shows that, when

taken with their reduced structure, these components are all themselves

smooth.

We are interested in the case when V has non-isolated singularities.

Very little is known at this level of generality, but examples show that

the picture for non-isolated singularities is very different from the one

just sketched for isolated singularities. Our main reason for wanting

to work with non-isolated singularities is the Fanosearch project: we

wish to prove a general criterion for smoothing a toric Fano variety, and

Conjecture A here is just the local case.

Conjecture A characterizes smoothing components of Def V in terms

of the combinatorics of the polygon F . Specifically, we define the set B of

0-mutable Laurent polynomials with Newton polygon F , and the conjec-
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ture states that there is a canonical bijective correspondence κ : B→ A,

where A is the set of smoothing components of Def V .

At first sight the formulation of the conjecture seems strange; how-

ever, the statement makes sense in the context of mirror symmetry,

where (conjecturally) the 0-mutable polynomials are the mirrors of the

corresponding smoothing components.

In Section 1.4, we state a new Conjecture B,1 which implies the exis-

tence of a map κ : B→ A — see Remark 1.4.1. In that section, we also

explain how to (conjecturally) construct a deformation directly from a

0-mutable polynomial in the spirit of the intrinsic mirror symmetry of

Gross–Siebert [19, 18] and work of Gross–Hacking–Keel [21].

The coefficients of the 0-mutable Laurent polynomials that appear

in our conjecture ought themselves to enumerate certain holomorphic

discs in the corresponding smoothing, and we would love to see a precise

statement along these lines.

In our view, the conjectures together are nothing other than a state-

ment of mirror symmetry as a one-to-one correspondence between two

sets of objects, similar to the conjectures made in [2] in the context of

orbifold del Pezzo surfaces, and the correspondence between Fano 3-folds

and Minkowski polynomials discovered in [10].

In Section 1.3 we give some equivalent characterisations of 0-mutable

polynomials and begin to sketch some of their general properties. These

properties make it very easy to enumerate the 0-mutable polynomials

with given Newton polygon. The material here is rather sketchy — full

details will appear elsewhere; it serves for context, but it is not logically

necessary for the statement of the conjectures.

The suggestion that there is a simple structure to the set of smoothing

components is surprising in a subject that — as all serious practitioners

know — is marred by Murphy’s law. In fact, there is a substantial body

of direct and circumstantial evidence for the conjectures, some of which

we present in Section 1.5.

In the final Section 1.6 we compute in detail the deformation space

of the variety VF associated to the polygon F of Example 1.2.12, giv-

ing evidence for the conjectures. Some of the reasons for choosing this

particular example are:

(1) The variety VF is of codimension 5 and hence it lies outside the —

1 The statement of Conjecture B comes after Sec. 1.3 but does not logically
depend on it: if you wish, you can skip directly from Sec. 1.2.3 to Sec. 1.4.1.
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still rudimentary but very useful — structure theory of codimension-

4 Gorenstein rings [30], see also [9, 8];

(2) For this reason, VF is a good test of the technology of [12, 13] as a

tool for possibly proving the conjectures;

(3) The polygon F appears as a facet of some of the 3-dimensional reflex-

ive polytopes and hence it is immediately relevant for the Fanosearch

project.

As things stand, we are some distance away from being able to prove the

conjectures. We had a tough time even with the example of Section 1.6:

while a treatment based on [12, 13] seems possible, the task became so

tedious that we decided instead to rely on Ilten’s Macaulay2 [17] package

Versal deformations and local Hilbert schemes [25]. That package makes

it possible to test the conjectures in many other examples in codimension

≥ 5.

Notation and conventions

We work over C, but everything holds over an algebraically closed field

of characteristic zero. We refer the reader to [15] for an introduction to

toric geometry. All the toric varieties we consider are normal. We use

the following notation.

F a lattice polygon

V the Gorenstein toric affine 3-fold associated to the cone over

F put at height 1

∂V the toric boundary of V

X the projective toric surface associated to the normal fan of F

B the toric boundary of X

A the ample line bundle on X given by F

X the cluster surface associated to F (the non-toric blowup of

X constructed in Section 1.3)

B the strict transform of B in X

W [ the toric 3-fold constructed in Section 1.4

W the toric blowup of W [ constructed in Section 1.4

W the mirror cluster variety (the non-toric blowup of W con-

structed in Section 1.4)
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1.2 Conjecture A

1.2.1 Gorenstein toric affine varieties

Consider a rank-n lattice N ' Zn (usually n = 3) and, as usual in toric

geometry, its dual lattice M = HomZ(N,Z). The n-dimensional torus

T = SpecC[M ]

is referred to simply as “the” torus.2 Consider a strictly convex full-

dimensional rational polyhedral cone σ ⊂ NR and the corresponding

affine toric variety

V = SpecC[σ∨ ∩M ].

This is a normal Cohen–Macaulay n-dimensional variety.

By definition V is Gorenstein if and only if the pre-dualising sheaf

ω0
V = H−n(ω•V )

is a line bundle. Since our V is Cohen–Macaulay, this is the same as

insisting that all the local rings of V are local Gorenstein rings. It is

known and not difficult to show that V is Gorenstein if and only if there

is a vector u ∈ M such that the integral generators ρ1, . . . , ρm of the

rays of the cone σ all lie on the affine lattice L = (u = 1) ⊂ N . Such

vector u is called the Gorenstein degree.

If V is Gorenstein, then the toric boundary of V is the following

effective reduced Cartier divisor on V :

∂V = SpecC[σ∨ ∩M ]/(xu).

If V is Gorenstein, we set

F := σ ∩ (u = 1);

this is an (n − 1)-dimensional lattice polytope embedded in the affine

lattice L = (u = 1) and it is the convex hull of the integral generators

of the rays of the cone σ. One can prove that the isomorphism class of

V depends only on the affine equivalence class of the lattice polytope F

in the affine lattice L. Therefore we will say that V is associated to the

polytope F .

This establishes a 1-to-1 correspondence between isomorphism classes

of Gorenstein toric affine n-folds without torus factors and (n − 1)-

dimensional lattice polytopes up to affine equivalence.

2 Sometimes we denote this torus by TN , that is, the commutative group scheme
N ⊗Z Gm such that for all rings R TN (R) = N ⊗Z R×.
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1.2.2 Statement of Conjecture A

In this section we explain everything that is needed to make sense of the

following:

Conjecture A. Consider a lattice polygon F in a 2-dimensional affine

lattice L. Let V be the Gorenstein toric affine 3-fold associated to F .

Then there is a canonical bijective function κ : B→ A where:

• A is the set of smoothing components of the miniversal deformation

space Def V ,

• B is the set of 0-mutable polynomials f ∈ C[L] with Newton polygon

F .

Remark 1.2.1. It is absolutely crucial to appreciate that we are not

assuming that V has an isolated singularity at the toric 0-stratum. If

V does not have isolated singularities, Def V is infinite-dimensional. A

few words are in order to clarify what kind of infinite dimensional space

Def V is.

In full generality, there is some discussion of this issue in the literature

on the analytic category, see for example [23, 24].3 In the special situation

of interest in this paper, we take a näıve approach, which we briefly

explain, based on the following two key facts:

(i) If V is a Gorenstein toric affine 3-fold, then T 2
V is finite dimen-

sional. Indeed V has transverse A?-singularities in codimension

two, hence it is unobstructed in codimension two, hence T 2
V is a fi-

nite length module supported on the toric 0-stratum. In fact, there

is an explicit description of T 2
V as a representation of the torus, see

[6, Section 5], an example of which is in Lemma 1.6.4 below. This

shows that Def V is cut out by finitely many equations.

(ii) On the other hand, the known explicit description of T 1
V as a rep-

resentation of the torus [5, Theorem 4.4], together with the explicit

description of T 2
V just mentioned, easily implies that each of the

equations can only use finitely many variables.4

Thus we can take Def V to be the Spec of a non-Noetherian ring, that

is, the simplest kind of infinite-dimensional scheme.5

3 We thank Jan Stevens for pointing out these references to us. We are not aware
of a similar discussion in the algebraic literature.

4 The key point is to show that for all fixed weights m ∈M , the equation
m =

∑
mivi has finitely many solutions for mi ∈ N \ {0} and vi ∈M a weight

that appears non-trivially in T 1
V . This type of consideration is used extensively in

the detailed example discussed in Section 1.6.
5 The situation is not so simple for the universal family U → Def V . Indeed the
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Remark 1.2.2. Conjecture A does not state what the function κ is,

nor what makes it “canonical.” The existence of a function κ : B→ A is

implied by Conjecture B stated in Section 1.4.1 below, see Remark 1.4.1.

Remark 1.2.3. Let V be a Gorenstein toric affine 3-fold and let ∂V be

the toric boundary of V . Let Def(V, ∂V ) be the deformation functor (or

the base space of the miniversal deformation) of the pair (V, ∂V ). There

is an obvious forgetful map Def(V, ∂V )→ Def V . In this case, since ∂V is

an effective Cartier divisor in V and V is affine, this map is smooth of rel-

ative dimension equal to the dimension of coker
(
H0(θV )→ H0(N∂V/V )

)
,

where θV is the sheaf of derivations on V and N∂V/V = O∂V (∂V ) is the

normal bundle of ∂V inside V . In particular, this implies that Def V and

Def(V, ∂V ) have exactly the same irreducible components. One can also

see that a smoothing component in Def V is the image of a component

of Def(V, ∂V ) where also ∂V is smoothed.

In other words, we can equivalently work with deformations of V or

deformations of the pair (V, ∂V ). The right thing to do in mirror sym-

metry is to work with deformations of the pair (V, ∂V ); however, the

literature on deformations of singularities is all written in terms of V . In

most cases it is not difficult to make the translation but this paper is not

the right place for doing that. Thus when possible we work with defor-

mations of V . The formulation of Conjecture B in Section 1.4 requires

that we work with deformations of the pair (V, ∂V ).

1.2.3 The definition of 0-mutable Laurent polynomials

This subsection is occupied by the definition of 0-mutable Laurent poly-

nomials. The simple key idea — and the explanation for the name “0-

mutable” — is that an irreducible Laurent polynomial f is 0-mutable if

and only if there is a sequence of mutations

f 7→ f1 7→ · · · 7→ fp = 1

starting from f and ending with the constant monomial 1. The pre-

cise definition is given below after some preliminaries on mutations. The

definition is appealing and it is meaningful in all dimensions, but it is

not immediately useful if you want to study 0-mutable polynomials. In-

deed, for example, to prove that a given polynomial f is 0-mutable one

must produce a chain of mutations as above and it may not be obvious

equations of U naturally involve all the infinitely many coordinate functions on
T 1
V . Thus, U is a bona fide ind-scheme. The language to deal with this exists but

it is not our concern here.
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where to look. It is even less clear how to prove that f is not 0-mutable.

In Section 1.3, Theorem 1.3.5, we prove two useful characterizations of

0-mutable polynomials in two variables. The first of these states that

a polynomial is 0-mutable if and only if it is rigid maximally muta-

ble. From this property it is easy to check that a given polynomial is

0-mutable, that it is not 0-mutable, and to enumerate 0-mutable polyno-

mials with given Newton polytope. The second characterization states

that a (normalized, see below) Laurent polynomial in two variables is

0-mutable if and only if the irreducible components of its vanishing locus

are −2-curves on the cluster surface: see Section 1.3 for explanations and

details.

Let L be an affine lattice and let L0 be its underlying lattice.6

In other words, L0 is a free abelian group of finite rank and L is a

set together with a free and transitive L0-action. We denote by C[L] the

vector space over C whose basis is made up of the elements of L. For

every l ∈ L we denote by xl the corresponding element in C[L]. Elements

of C[L] will be called (Laurent) polynomials. It is clear that C[L] is a

rank-1 free module over the C-algebra C[L0]. The choice of an origin in

L specifies an isomorphism C[L] ' C[L0].

Definition 1.2.4. A Laurent polynomial f ∈ C[L] is normalized if for

all vertices v ∈ Newt f we have av = 1 where av is the coefficient of the

monomial xv as it appears in f .

In this paper all polynomials are assumed to be normalized unless

explicitly stated otherwise.

If f ∈ C[L] then we say that f lives on the smallest saturated affine

sub-lattice L′ ⊆ L such that f ∈ C[L′]. The property of being 0-mutable

only depends on the lattice where f lives — here it is crucial that we only

allow saturated sub-lattices. We say that f is an r-variable polynomial

if f lives on a rank-r affine lattice.

Let us start by defining 0-mutable polynomials in 1 variable.

Definition 1.2.5. Let L be an affine lattice of rank 1 and let L0 be

its underlying lattice. Let v ∈ L0 be one of the two generators of L0. A

polynomial f ∈ C[L] is called 0-mutable if

f = (1 + xv)kxl

6 In our setup L = (u = 1) ⊂ N does not have a canonical origin. We try to be
pedantic and write L0 for the the underlying lattice – in our example,
L0 = Keru. In practice this distinction is not super-important and you are free
to choose an origin anywhere you want.
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for some l ∈ L and k ∈ N.

(It is clear that the definition does not depend on the choice of v.)

If f is a Laurent polynomial in 1 variable and its Newton polytope

is a segment of lattice length k, then f is 0-mutable if and only if the

coefficients of f are the k + 1 binomial coefficients of weight k.

The definition of 0-mutable polynomials in more than 1 variable will

be given recursively on the number of variables. Thus from now on we

fix r ≥ 2 and we assume to know already what it means for a polynomial

of < r variables to be 0-mutable. Before we can state what it means for

a polynomial f of r variables to be 0-mutable, we need to explain how

to mutate f .

If L is an affine lattice, we denote by Aff(L,Z) the lattice of affine-

linear functions ϕ : L → Z. If L0 denotes the underlying lattice of L, ϕ

has a well-defined linear part which we denote by ϕ0 : L0 → Z.

Definition 1.2.6. Let r ≥ 2 and fix a rank-r affine lattice L.

A mutation datum is a pair (ϕ, h) of a non-constant affine-linear func-

tion ϕ : L→ Z and a 0-mutable polynomial h ∈ C[Kerϕ0].

Given a mutation datum (ϕ, h) and f ∈ C[L], write (uniquely)

f =
∑
k∈Z

fk where fk ∈ C[(ϕ = k) ∩ L]

We say that f is (ϕ, h)-mutable if for all k < 0 h−k divides fk (equiv-

alently, if for all k ∈ Z hkfk ∈ C[L]). If f is (ϕ, h)-mutable, then the

mutation of f , with respect to the mutation datum (ϕ, h), is the poly-

nomial:

mut(ϕ,h) f =
∑
k∈Z

hkfk.

Remark 1.2.7. The notion of mutation goes back (at least) to Fomin–

Zelevinsky [14]. We first learned of mutations from the work of Galkin–

Usnich [16] and Akhtar–Coates–Galkin–Kasprzyk [1]. This paper owes a

significant intellectual debt to the interpretation of mutations developed

in work by Gross, Hacking and Keel, for instance [22, 20, 21].7

The following is a recursive definition. The base step is given by Def-

inition 1.2.5.

7 Many mathematicians work on mutations from different perspectives and we
apologize for not even trying to quote all the relevant references here.
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Definition 1.2.8. Let L be an affine lattice of rank r ≥ 2. We define

the set of 0-mutable polynomials on L in the following recursive way.

(i) If L′ is a saturated affine sub-lattice of L and f ∈ C[L′] is 0-

mutable, then f is 0-mutable in C[L].

(ii) If f = f1f2 is reducible, then f is 0-mutable if both factors f1, f2
are 0-mutable.8

(iii) If f is irreducible, then f is 0-mutable if a mutation of f is 0-

mutable.

Equivalently, the set of 0-mutable polynomials of ≤ r variables is the

smallest subset of C[L] that contains all 0-mutable polynomials of < r

variables and that is closed under the operations of taking products (in

particular translation) and mutations of irreducible polynomials.

Remark 1.2.9. It follows easily from the definition that 0-mutable poly-

nomials are normalized. Indeed:

(1) The polynomials in Definition 1.2.5 (the base case) are 0-mutable;

(2) The product of two normalized polynomials is normalized;

(3) The mutation of a normalized polynomial is normalized.

Example 1.2.10. Let L be an affine lattice and let v be a primitive vec-

tor in the underlying lattice L0. Definition 1.2.5 and Definition 1.2.8(i)

imply that (1 + xv)kxl is 0-mutable for all l ∈ L and k ∈ N.

Example 1.2.11. Consider the triangle

F = conv ((0, 0), (3, 0), (3, 2)) (1.1)

in the lattice L = Z2. Let us identify C[L] with C[x±, y±]. One can prove

that there are exactly two 0-mutable polynomials with Newton polytope

F , namely:

(1 + x)3 + 2(1 + x)x2y + x3y,

(1 + y)2x3 + 3(1 + y)x2 + 3x+ 1.

In Figure 1.1 we have written the coefficients of these two polynomials

next to the lattice point of F associated to the corresponding monomial.

It is shown in [9] that Def V has two components, and that they

are both smoothing components, confirming our conjectures. The cal-

culation there goes back to unpublished work by Jan Stevens, but see

also [5].

8 In order to take the “product” f1f2 one has to choose an origin in L. This choice
makes no difference to the definition.
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1 3 3 1

2 2

1

1 3 3 1

3 2

1

Figure 1.1 The two 0-mutable polynomials whose Newton polytope
is the triangle F defined in (1.1)

Example 1.2.12. Consider the quadrilateral

F = conv ((−1,−1), (2,−1), (1, 1), (−1, 2)) (1.2)

in the lattice L = Z2. Let us identify C[L] with C[x±, y±]. Consider the

polynomial

g =
(1 + x)3 + (1 + y)3 − 1 + x2y2

xy
,

which is obtained by giving binomial coefficients to the lattice points of

the boundary of F and by giving zero coefficient to the interior lattice

points of F . By Lemma 1.3.1(2) every 0-mutable polynomial with New-

ton polytope F must coincide with g on the boundary lattice points of

F . One can prove that there are exactly three 0-mutable polynomials

with Newton polytope F , namely:

α = g + 5 + 2x+ 2y =
(1 + x+ 2y + y2)(1 + 2x+ x2 + y)

xy
,

β = g + 6 + 3x+ 4y =
(1 + x)3 + 3y(1 + x)2 + y2(1 + x)(3 + x) + y3

xy
,

γ = g + 6 + 4x+ 3y =
(1 + y)3 + 3x(1 + y)2 + x2(1 + y)(3 + y) + x3

xy
.

In Figure 1.2 we have written down the coefficients of these three poly-

nomials. The polynomial α is reducible and it is easy to show that its

factors are 0-mutable.

Let us consider the following affine-linear functions L = Z2 → Z:

−m1
2,1 : (a, b) 7→ b− 1,

−m1
3,1 : (a, b) 7→ b− 2,

−m1
3,2 : (a, b) 7→ 2b− 1.

The level sets of these three affine-linear functions are depicted in Fig-

ure 1.3. We now consider the mutation data (−m1
2,1, 1 + x), (−m1

3,2, 1 +
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1 3 3 1

3

3

1

1

5 2

2

α

1 3 3 1

3

3

1

1

6 3

4

β

1 3 3 1

3

3

1

1

6 4

3

γ

Figure 1.2 The three 0-mutable polynomials α, β and γ whose New-
ton polytope is the quadrilateral F defined in (1.2)

x) and (−m1
3,1, 1 + x). The polynomial α is mutable with respect to

(−m1
2,1, 1 + x) and to (−m1

3,2, 1 + x) and

mut(−m1
2,1,1+x)

α =
1 + x

xy
+

3 + 2x

x
+
y(3 + 2x+ x2)

x
+
y2(1 + x)

x
,

mut(−m1
3,2,1+x)

α =
1

xy
+

3 + 2x

x
+
y(3 + 5x+ 3x2 + x3)

x
+
y2(1 + x)3

x
,

but α is not mutable with respect to (−m1
3,1, 1 + x). The polynomial

β is mutable with respect to all three mutation data (−m1
2,1, 1 + x),

(−m1
3,2, 1 + x) and (−m1

3,1, 1 + x), and the mutations are:

mut(−m1
2,1,1+x)

β =
1 + x

xy
+

3(1 + x)

x
+
y(3 + x)(1 + x)

x
+
y2(1 + x)

x
,

mut(−m1
3,1,1+x)

β =
1

xy
+

3

x
+
y(3 + x)

x
+
y2

x
=

(1 + y)3 + xy2

xy
,

mut(−m1
3,2,1+x)

β =
1

xy
+

3(1 + x)

x
+
y(3 + x)(1 + x)2

x
+
y2(1 + x)3

x
.
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1

0

−1

−2

−m1
2,1

0

−1

−2

−3

−m1
3,1

3

1

−1

−3

−m1
3,2

Figure 1.3 The level sets of the three affine-linear functions L = Z2 →
Z considered in Example 1.2.12

The polynomial γ is not mutable with respect to any of the mutation

data (−m1
2,1, 1 + x), (−m1

3,2, 1 + x), (−m1
3,1, 1 + x).

1.3 Properties of 0-mutable polynomials

1.3.1 Some easy properties

If L is an affine lattice, f ∈ C[L] and F = Newt f , then we write

f =
∑
l∈F∩L

alx
l with al ∈ C.

For every subset A ⊆ LR, we write

f |A =
∑
l∈A∩L

alx
l.

Lemma 1.3.1. (1) (Non-negativity and integrality) If f is 0-mutable,

then every coefficient of f is a non-negative integer.

(2) (Boundary terms) If f ∈ C[L] is 0-mutable and F ≤ Newt f is a

face, then f |F is 0-mutable.
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Sketch of proof (1) is obvious due to the recursive definition of 0-mutable

polynomials. Also (2) is easy because it is enough to observe that mu-

tations and products behave well with respect to restriction to faces of

the Newton polytope.

Remark 1.3.2. A 0-mutable polynomial may have a zero coefficient at

a lattice point of its Newton polytope, e.g. (1 + x)(1 + xy2).

1.3.2 Rigid maximally mutable polynomials

From now on we focus on the two-variable case r = 2. In what follows, we

give two equivalent characterizations of 0-mutable polynomials, one ge-

ometric in terms of the associated cluster variety and one combinatorial

in terms of rigid maximally mutable polynomials.9

Let L be an affine lattice of rank 2. For a Laurent polynomial f ∈ C[L],

we set

S (f) =
{

mutation data s = (ϕ, h)
∣∣∣ f is s-mutable

}
.

Conversely, if S is a set of mutation data, we denote by

L(S ) =
{
f ∈ C[L]

∣∣∣ ∀s ∈ S , f is s-mutable
}

the vector space of Laurent polynomials f that are s-mutable for all the

mutation data s ∈ S . For every polynomial f ∈ C[L], it is clear that

f ∈ L(S (f)).

Definition 1.3.3 (Kasprzyk). Let L be an affine lattice of rank 2, and

f ∈ C[L].

(i) If f = f1f2 is the product of normalized polynomials f1, f2, then f

is rigid maximally mutable if both factors f1, f2 are rigid maximally

mutable;

(ii) If f is normalized and irreducible, then f is rigid maximally mu-

table if

L (S (f)) = {λf | λ ∈ C}.

9 The concept of rigid maximally mutable is due to Al Kasprzyk [26]. We thank
him for allowing us to include his definition here.
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1.3.3 Cluster varieties

Definition 1.3.4. A Calabi–Yau (CY) pair is a pair (Y, ω) of an n-

dimensional quasiprojective normal variety Y and a degree n rational

differential ω ∈ Ωnk(X), such that

D = −divY ω ≥ 0

is an effective reduced Cartier divisor on Y .10

A torus chart on (Y, ω) is an open embedding

j : (C×)n ↪→ Y \D such that j?(ω) =
1

(2πi)n
dx1
x1
∧ · · · ∧ dxn

xn
.

A cluster variety is an n-dimensional CY pair (Y, ω) that has a torus

chart.

In our situation, the pair (Y,D) will always be log smooth.

1.3.4 The cluster surface

We construct a cluster surface from a lattice polygon.

Let L be an affine lattice of rank 2. There is a canonical bijection

between the set of lattice polygons F ⊂ LR up to translation and the set

of pairs (X,A) of a projective toric surface X and an ample line bundle

A on X: the torus in question is SpecC[L0]; the fan of the surface X is

the normal fan of F , and it all works out such that there is a natural

1-to-1 correspondence between F ∩ L and a basis of H0(X,A).

Fix a lattice polygon F in L and consider the corresponding polarised

toric surface (X,A). Denote by B the toric boundary of X. For each

edge E ≤ F , let `(E) be the lattice length of E and let BE be the prime

component of B corresponding to E; we have that BE is isomorphic to

P1 and the line bundle A|BE
has degree `(E). Denote by xE ∈ BE the

point [1 : −1] ∈ P1.

For all edges E ≤ F , blow up `(E) times above xE in the proper

transform of BE and denote by

p : (X,B) −→ (X,B)

the resulting surface, where B ⊂ X is the proper transform of the toric

boundary B =
∑
E≤F BE . We call the pair (X,B) the cluster surface

associated to the lattice polygon F .

10 Like most people, we mostly work with the pair (Y,D) and omit explicit
reference to ω.
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Theorem 1.3.5. Let L be a rank-2 lattice. The following are equivalent

for a normalized Laurent polynomial f ∈ C[L]:

(1) f is 0-mutable;

(2) f is rigid maximally mutable;

(3) Let p : (X,B)→ (X,B) be the cluster surface associated to the poly-

gon F = Newt f . Denote by Z ⊂ X the divisor of zeros of f and

by Z ′ ⊂ X the proper transform of Z. Every irreducible component

Γ ⊂ Z ′ is a smooth rational curve with self-intersection Γ2 = −2.

(Necessarily then B · Γ = 0 hence Γ is disjoint from the boundary

B.)

Remark 1.3.6. The support of Z ′ is not necessarily a normal crossing

divisor. The irreducible components need not meet transversally, and

≥ 3 of them may meet at a point.

Sketch of proof In proving all equivalences we may and will assume

that the polynomial f is irreducible hence Z is reduced and irreducible.

The proof uses the following ingredients, which we state without fur-

ther discussion or proof:

(i) To give a torus chart j : C× 2 ↪→ X \ B in X is the same as

to give a toric model of (X,B), that is a projective morphism

q : (X,B) → (X ′, B′) where (X ′, B′) is a toric pair and q maps

j(C× 2) isomorphically to the torus X ′ \B′;
(ii) The work of Blanc [7] implies that any two torus charts in X are

connected by a sequence of mutations between torus charts in X;

(iii) A set S of mutation data specifies a line bundle L(S ) on X such

that H0
(
X,L(S )

)
= L(S ) and, conversely, every line bundle on

X is isomorphic to a line bundle of the form L(S ).

Let us show first that (1) implies (3). To say that an irreducible poly-

nomial f is 0-mutable is to say that there exists a sequence of muta-

tions that mutates f to the constant polynomial 1. This sequence of

mutations constructs a new torus chart j1 : T = C× 2 ↪→ X \ B such

that the proper transform Z ′ – which is, by assumption, irreducible –

is disjoint from j1(T). This new toric chart gives a new toric model

p1 : (X,B) → (X1, B1) that maps j1(T) isomorphically to the torus

X1\B1 and hence contracts Z ′ to a boundary point. Z ′ is not a −1-curve,

because those are all p-exceptional, hence Z ′ is a −2-curve.

To show that (3) implies (1), by Lemma 1.3.7 below, there is a new

toric model p1 : (X,B) → (X1, B1) that contracts Z ′ to a point in the
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boundary. The new toric model then gives a new torus chart j1 : T ↪→ X

such that Z ′ is disjoint from j1(T). By Blanc the induced birational map

of tori

j−11 j : T 99K T

is a composition of mutations that mutates f to the constant polynomial.

Let us now show that (3) implies (2). By some tautology, Z ′ is the

zero divisor of the section f of the line bundle L(S ) on X specified by

the set of mutation data S = S (f), and H0(X,Z ′) = L(S ). Since Z ′

is a −2-curve, L(S ) is 1-dimensional, which is to say that f is rigid

maximally mutable.

Finally we show that (2) implies (3). Denote by L = L(S ) the line

bundle on X specified by the set of mutations S = S (f), so that Z ′ is

the zero-locus of a section of L. Note that:

h2(X,L) = h0(X,KX − Z ′) = h0(Y,−B − Z ′) = 0

Riemann–Roch and the fact that f is rigid give:

1 = h0(X,Z ′) = h0(X,L) ≥ χ(X,L) = 1 +
1

2
(Z ′ 2 + Z ′B)

and hence, because Z ′B ≥ 0, we conclude that Z ′ 2 ≤ 0 and:

2pa(Z ′)− 2 = degωZ′ = Z ′ 2 − Z ′B ≤ 0

so either:

(i) degωZ′ < 0 and then Z ′ is a smooth rational curve, and then as

above Z ′ is not a −1 curve therefore it is a −2-curve, or

(ii) ωZ′ = OZ′ and Z ′ 2 = Z ′B = 0. It follows that Z ′ is actually

disjoint from B and OZ′(Z ′) = OZ′ . The homomorphism

H0(X,Z ′)→ H0 (Z ′,OZ′(Z ′)) = C

is surjective, hence actually h0(X,Z ′) = 2, a contradiction.

This means that we must be in case (i) where Z ′ is a −2-curve.

Lemma 1.3.7. Let (Y,D) be a cluster surface, and Z ′ ⊂ Y an inte-

rior −2-curve. Then there is a toric model q : (Y,D) → (X ′, B′) that

contracts Z ′.

Sketch of proof First contract Z ′ to an interior node and then run a

MMP. There is a small number of cases to discuss depending on how the

MMP terminates.
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1.4 Conjecture B

In this section we state a new conjecture — Conjecture B — which

implies, see Remark 1.4.1, the existence of the map κ : B → A of Con-

jecture A. In the strong form stated in Remark 1.4.2, together with

Conjecture A, Conjecture B asserts that the smoothing components of

Def(V, ∂V ) are themselves smooth, and computes their tangent space

explicitly as a representation of the torus. We conclude by explaining

how the two Conjectures A and B originate in mirror symmetry. This

last discussion is central to how we arrived at the formulation of the

conjectures, but it is not logically necessary for making sense of their

statement. We work with the version of mirror symmetry put forward

in [21] and [18, 19].11

For the remainder of this section fix a lattice polygon F and denote,

as usual, by V the corresponding Gorenstein toric affine 3-fold with toric

boundary ∂V .

In this section we always work with the space Def(V, ∂V ). Also fix a 0-

mutable polynomial f ∈ C[L] with Newt f = F . Conjecture B associates

to f a T-equivariant family (Uf ,Df )→Mf of deformations of the pair

(V, ∂V ).

In the last part of this section we construct from f a 3-dimensional

cluster variety (W,D), conjecturally the mirror of Mf , and hint at an ex-

plicit conjectural construction of the family Uf →Mf from the degree-0

quantum log cohomology of (W,D).

Denote by σ ⊂ NR the cone over F at height 1. As usual, u ∈ M =

HomZ(N,Z) denotes the Gorenstein degree, so F = σ ∩ L where L =

(u = 1).

1.4.1 Statement of Conjecture B

As in Sec. 1.3.2, denote by S (f) the set of mutation data of f . Recall

that an element of S (f) is a pair (ϕ, h) consisting of an affine func-

tion ϕ ∈ Aff(L,Z) and a Laurent polynomial h ∈ C[Kerϕ0]. Using the

restriction isomorphism M ' Aff(L,Z), when it suits us we view a mu-

tation datum (ϕ, h) as a pair of an element ϕ ∈ M and a polynomial

h ∈ C[L0 ∩Kerϕ] ⊆ C[N ].

The most useful mutation data are those where ϕ is strictly negative

11 We thank Paul Hacking for several helpful discussions on mirror symmetry and
for correcting earlier drafts of this section. We are of course responsible for the
mistakes that are left.
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somewhere on F , and then the minimum of ϕ on F is achieved on an edge

E ≤ F .12 In the present discussion we want to focus on these mutation

data:

S−(f) =

{
(ϕ, h) ∈ S (f)

∣∣∣∣ for some edge E ≤ F ,

ϕ|E is constant and < 0

}
.

We want to define a seed S̃ (f) on N , that is, a set of pairs (ϕ, h) of a

character ϕ ∈ M and a Laurent polynomial h ∈ C[Kerϕ]. The seed we

want is

S̃ (f) = S−(f)∪
{

(−ku, h)
∣∣∣ h is a prime factor of f of multiplicity k

}
.

Conjecture B. In this statement, if U is a representation of the torus

T = SpecC[M ] and m ∈M is a character of T, we denote by U(m) the

direct summand of U on which T acts with pure weight m.

Let F ⊂ L be a lattice polygon, V the corresponding Gorenstein toric

affine 3-fold, and f ∈ C[L] a 0-mutable polynomial with Newt f = F .

For every integer k ≥ 1, denote by nk the number of prime factors of f

of multiplicity ≥ k.

Then there is a T-invariant submanifold Mf ⊂ Def(V, ∂V ) such that

dimT0Mf (m) =


1

if m 6∈ 〈−u〉+ and there exists (ϕ, h) ∈ S̃ (f)

such that m = ϕ,

nk if m = −ku for some integer k ≥ 1,

0 otherwise,

and the general fibre of the family over Mf is a pair consisting of a

smooth variety and a smooth divisor.

Remark 1.4.1. If Conjecture B holds then by openness of versality a

general point of Mf lies in a unique component of Def(V, ∂V ) and this

gives the map κ : B → A in the statement of Conjecture A (see also

Remark 1.2.3).

Remark 1.4.2 (Strong form of Conjecture B). A strong form of Con-

jecture B states that the families Mf are precisely the smoothing com-

ponents of Def(V, ∂V ).

Example 1.4.3 (Example 1.2.12 continued). Consider the quadrilateral

F in L = Z2 defined in (1.2) and the three 0-mutable polynomials α, β

12 Recall that in Definition 1.2.6 we explicitly assume that ϕ is not constant on F .
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and γ with Newton polytope F . Set N = L ⊕ Z = Z3 and consider the

following linear functionals in M = HomZ(N,Z) = Z3:

−m1
2,1 = (0, 1,−1) −m2

2,1 = (1, 0,−1)

−m1
3,1 = (0, 1,−2) −m2

3,1 = (1, 0,−2)

−m1
3,2 = (0, 2,−1) −m2

3,2 = (2, 0,−1)

and−u = (0, 0,−1). The names−m1
2,1,−m1

3,1 and−m1
3,2 are compatible

with the affine-linear functions considered in Example 1.2.12 via the

restriction isomorphism M ' Aff(L,Z). Set x = x(1,0,0) ∈ C[N ] and

y = x(0,1,0) ∈ C[N ]. Then we have:

S̃ (α) ⊇
{

(−u, 1 + x+ 2y + y2), (−u, 1 + y + 2x+ x2)
}
,

S̃ (α) ⊇
{

(−m1
2,1, 1 + x), (−m1

3,2, 1 + x), (−m2
2,1, 1 + y), (−m2

3,2, 1 + y)
}
,

S̃ (β) ⊇
{

(−u, β), (−m1
2,1, 1 + x), (−m1

3,1, 1 + x), (−m1
3,2, 1 + x)

}
,

S̃ (γ) ⊇
{

(−u, γ), (−m2
2,1, 1 + y), (−m2

3,1, 1 + y), (−m2
3,2, 1 + y)

}
.

Let V be the Gorenstein toric affine 3-fold associated to F . Con-

jecture B states that there are three submanifolds Mα, Mβ and Mγ

of Def(V, ∂V ) such that the dimensions of T0Mα(m), T0Mβ(m) and

T0Mγ(m) for m ∈ {−u,−m1
2,1,−m1

3,1,−m1
3,2,−m2

2,1,−m2
3,1,−m2

3,2} are

written down in the table below.

−u −m1
2,1 −m1

3,1 −m1
3,2 −m2

2,1 −m2
3,1 −m2

3,2

dimT0Mα(m) 2 1 0 1 1 0 1

dimT0Mβ(m) 1 1 1 1 0 0 0

dimT0Mγ(m) 1 0 0 0 1 1 1

1.4.2 Mirror symmetry interpretation

Denote by Uf →Mf the deformation family of V induced by the com-

position Mf ↪→ Def(V, ∂V ) � Def V . We sketch a construction of Uf

in the spirit of intrinsic mirror symmetry [18, 19].

Let σ∨ ⊂ MR be the dual cone, and let s1, . . . , sr be the primitive

generators of the rays of σ∨. Denote by W [ the toric variety — for the

dual torus TM = SpecC[N ] — constructed from the fan consisting of

the cones {0}, 〈−u〉+, the 〈sj〉+, and the two-dimensional cones

〈−u, sj〉+

(for j = 1, . . . , r), and let D[ ⊂W [ be the toric boundary.
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Now, the set of edges E ≤ F is in 1-to-1 correspondence with the set

{s1, . . . , sr}, where E corresponds to sj if sj |E = 0. If (ϕ, h) ∈ S̃ (f) and

ϕ 6∈ 〈−u〉+, then there is a unique j such that ϕ is in the cone 〈−u, sj〉+
spanned by −u and sj .

Let

(W,D) −→ (W [, D[)

be the toric variety obtained by adding the rays 〈ϕ〉+ ⊂ MR whenever

(ϕ, h) ∈ S̃ (f), and (infinitely many) two-dimensional cones subdividing

the cones 〈−u, sj〉+. Note that W is not quasi-compact and not proper.

Finally, we construct a projective morphism

(W,D) −→ (W,D)

by a sequence of blowups.

In what follows for all (ϕ, h) ∈ S̃ (f) we denote by D〈ϕ〉+ ⊂ W the

corresponding boundary component, and set

Zh = (h = 0) ⊂ D〈ϕ〉+ .

The following simple remarks will be helpful in describing the con-

struction.

(a) For all positive integers k, (kϕ, h) ∈ S−(f) if and only if (ϕ, hk) ∈
S−(f).

(b) By construction, if (ϕ, h) ∈ S−(f), then one has h = (1+xe)k (up to

translation) for some positive integer k, where e ∈M is a primitive

lattice vector along the edge E ≤ F where ϕ achieves its minimum.

Let R ⊂ MR be a ray of the fan of W other than 〈−u〉+, and let

ϕ ∈M be the primitive generator of R. It follows from the remarks just

made that there is a largest positive integer kR such that (kRϕ, 1+xe) ∈
S−(f).

Our mirror W is obtained from W by:

(1) First, as R runs through all the rays of the fan of W other than

〈−u〉+ in some order, blow up kR times above (1 + xe = 0) in the

proper transform of DR. It can be seen, and it is a nontrivial fact,

that after doing all these blowups the Zh in the proper transforms

of the D〈−u〉+ are smooth;

(2) Subsequently, if f =
∏
hk(h) where the h are irreducible, blow up in

any order k(h) times above Zh in the proper transform of D〈−u〉+ .
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The resulting CY pair (W,D) is log smooth, because we have blown

up a sequence of smooth centres. This (W,D) is the mirror of Mf .

One can see that the Mori cone NE(W/W ) is simplicial, and hence

there is an identification:

Mf = SpecC[NE(W/W )]

Mirror symmetry suggests — modulo issues with infinite-dimensionality

— that the ring QH0
log(W,D;C[NE(W/W )]) has a natural filtration and

that one recovers the universal family of pairs (Uf ,Df )→Mf from this

ring out of the Rees construction.

Remark 1.4.4. In the context of Conjecture B, it would be very nice to

work out an interpretation of the coefficients of the 0-mutable polynomial

f as counting certain holomorphic disks on the general fibre of the family

Uf →Mf .

1.5 Evidence

We have already remarked that the variety V of Example 1.2.11 con-

firms Conjecture A. Here we collect some further evidence. Section 1.6

is a study of Def V where V is the variety of Example 1.2.12 and Exam-

ple 1.4.3.

1.5.1 Isolated singularities

Here we fix a lattice polygon F with unit edges, i.e. edges with lattice

length 1. Let V be the Gorenstein toric affine 3-fold associated to F ; we

have that V has an isolated singularity.

Altmann [4] proved that there is a 1-to-1 correspondence between the

irreducible components of Def V and the maximal Minkowski decom-

positions of F . This restricts to a 1-to-1 correspondence between the

smoothing components of Def V and the Minkowski decompositions of F

with summands that are either unit segments or standard triangles. Here

a standard triangle is a lattice triangle that is Z2 o GL2(Z)-equivalent

to conv ((0, 0), (1, 0), (0, 1)).

On a polygon F with unit edges, the 0-mutable polynomials are ex-

actly those that are associated to the Minkowski decompositions of F

into unit segments and standard triangles. This confirms Conjecture A.
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1.5.2 Local complete intersections

Nakajima [28] has characterised the affine toric varieties that are local

complete intersection (lci for short). These are Gorenstein toric affine va-

rieties associated to certain lattice polytopes called Nakajima polytopes.

We refer the reader to [11, Lemma 2.7] for an inductive characterisation

of Nakajima polytopes. From this characterisation it is very easy to see

that every Nakajima polygon is affine equivalent to

Fa,b,c = conv ((0, 0), (a, 0), (0, b), (a, b+ ac)) (1.3)

in the lattice Z2, for some non-negative integers a, b, c such that a ≥ 1

and b + c ≥ 1. It is easy to show that the Gorenstein toric affine 3-fold

associated to the polygon Fa,b,c is

Va,b,c = SpecC[x1, x2, x3, x4, x5]/(x1x2 − xc4xb5, x3x4 − xa5).

There is a unique 0-mutable polynomial on Fa,b,c: this is associated

to the unique Minkowski decomposition of Fa,b,c into a copies of the

triangle F1,0,c = conv ((0, 0), (1, 0), (0, c)) and b copies of the segment

conv ((0, 0), (0, 1)). On the other hand, as Va,b,c is lci, we have that Va,b,c
is unobstructed and smoothable, therefore there is a unique smoothing

component in the miniversal deformation space of Va,b,c. This confirms

Conjecture A.

1.6 A worked example

We explicitly compute the smoothing components of the miniversal de-

formation space of the Gorenstein toric affine 3-fold V associated to the

polygon F of Example 1.2.12 (continued in Example 1.4.3). We saw that

there exist exactly three 0-mutable polynomials with Newton polytope

F : α, β and γ. We explicitly compute the miniversal deformation space

of V and see that it has three irreducible components, all of which are

smoothing components. This confirms our conjectures.

1.6.1 The equations of V

We consider the quadrilateral

F = conv

((
−1

−1

)
,

(
2

−1

)
,

(
1

1

)
,

(
−1

2

))
(1.4)
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u s2

s1

z2

z3 z4 s4

s3

Figure 1.4 The intersections of the cone σ∨ with the planes R2×{1},
R2 × {2} and R2 × {3} in MR = R3

in the lattice L = Z2. We consider the cone σ obtained by placing F at

height 1, i.e. σ is the cone generated by

a1 =

−1

−1

1

 a2 =

 2

−1

1

 a3 =

1

1

1

 a4 =

−1

2

1


in the lattice N = L⊕ Z = Z3, and the corresponding Gorenstein toric

affine 3-fold V = SpecC[σ∨ ∩M ], where σ∨ is the dual cone of σ in the

dual lattice M = HomZ(N,Z) ' Z3.

The Gorenstein degree is

u = (0, 0, 1) ∈M.

The primitive generators of the rays of the dual cone σ∨ ⊆ MR are the

vectors

s1 = (0, 1, 1), s2 = (1, 0, 1), s3 = (−1, 2, 3), s4 = (−2,−1, 3)

which are orthogonal to the 4 edges of F . The Hilbert basis of the monoid

σ∨ ∩M is the set of the vectors

u, s1, z2 = (−1, 0, 2), s4, z3 = (−1,−1, 2), s3, z4 = (0,−1, 2), s2.

Notice that these are the Gorenstein degree u and certain lattice vectors

on the boundary of σ∨. The elements of the Hilbert basis of σ∨ ∩M are

depicted in Figure 1.4.

The elements of the Hilbert basis of σ∨ ∩M give a closed embedding

of V inside A8 such that the ideal is generated by binomial equations.
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By using rolling factors formats (see [32] and [33, §12]), one can13 see

that these equations are:

rank

(
xs1 xz2 xu xs2 xz4
xz2 xs4 xz3 xz4 xs3

)
≤ 1,

xs4xs3 − x3z3 = 0 xz2xs3 − x2z3xu = 0,

xz2xz4 − xz3x2u = 0 xs1xz4 − x3u = 0.

The singular locus of V has two irreducible components of dimension

1: V has generically transverse A2-singularities along each of these.

1.6.2 The tangent space

We consider the tangent space to the deformation functor of V , i.e.

T 1
V = Ext1OV

(Ω1
V ,OV ). This is a C-vector space with an M -grading. For

every m ∈ M we denote by T 1
V (−m) the graded component of T 1

V of

degree −m.

Lemma 1.6.1. We define J := {(p, q) ∈ Z2 | 2 ≤ p ≤ 3, q ≥ 1}. For

all p, q ∈ Z we set m1
p,q := pu− qs1 and m2

p,q := pu− qs2.

Then

dimT 1
V (−m) =


1 if m = u,

1 if m = m1
p,q with (p, q) ∈ J,

1 if m = m2
p,q with (p, q) ∈ J,

0 otherwise.

Proof This is a direct consequence of [5, Theorem 4.4].

Some of the degrees of T 1
V are depicted in Figure 1.5.

The base of the miniversal deformation of V is the formal comple-

tion (or germ) at the origin of a closed subscheme of the countable-

dimensional affine space T 1
V . We denote by tm the coordinate on the 1-

dimensional C-vector space T 1
V (−m), when m = u or m ∈ {m1

p,q,m
2
p,q}

with (p, q) ∈ J . Since we want to understand the structure of Def V , we

want to analyse the equations of Def V ↪→ T 1
V in the variables tu, tm1

p,q

and tm2
p,q

for (p, q) ∈ J .

The first observation is that each homogeneous first order deformation

of V is unobstructed as we see in the following two remarks.

13 We are obliged to the referee for suggesting these equations to us.
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σ∨

z2

u s2

−m2
2,2

−u −m2
2,1 −m2

3,2

−m2
3,1

Figure 1.5 Some degrees of T 1
V in the plane R×{0}×R ⊆MR = R3.

Remark 1.6.2. The 1-dimensional C-vector space T 1
V (−u) gives a first

order deformation of V , i.e. an infinitesimal deformation of V over

C[tu]/(t2u). This deformation can be extended to an algebraic deforma-

tion of V over C[tu] as follows (see [3]).

Consider the unique non-trivial Minkowski decomposition of F (see

Figure 1.6):

F = conv

((
0

0

)
,

(
1

0

)
,

(
0

2

))
+ conv

((
−1

−1

)
,

(
1

−1

)
,

(
−1

0

))
. (1.5)

Let F̃ be the Cayley polytope associated to this Minkowski sum; F̃ is

a 3-dimensional lattice polytope. Let σ̃ be the cone over F̃ at height 1,

i.e. σ̃ is the 4-dimensional cone generated by
0

0

1

0

,


1

0

1

0

,


0

2

1

0

,

−1

−1

0

1

,


1

−1

0

1

,

−1

0

0

1

.

Let Ṽ be the Gorenstein toric affine 4-fold Ṽ associated to σ̃. Consider

the difference of the two regular functions on Ṽ associated to the char-

acters (0, 0, 1, 0) and (0, 0, 0, 1); if we consider this regular function on
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= +

Figure 1.6 The Minkowski decomposition (1.5) of the quadrilateral
F defined in (1.4)

Ṽ as a morphism Ṽ → A1, we obtain the following cartesian diagram

V //

��

Ṽ

��
{0} // A1

which gives the wanted 1-parameter deformation of V .

Remark 1.6.3. For every m ∈ {m1
p,q,m

2
p,q} with (p, q) ∈ J , the first

order deformation of V corresponding to T 1
V (−m) ' C can be extended

to an algebraic deformation of V over C[tm] thanks to [5, Theorem 3.4]

(see also [27, 29]).

1.6.3 The obstruction space

We now consider the obstruction space of the deformation functor of

V : T 2
V = Ext2OV

(Ω1
V ,OV ). This is an M -graded C-vector space. For all

m ∈M we denote by T 2
V (−m) the direct summand of degree −m.

Lemma 1.6.4. If m ∈ {4u−s1, 4u−s2, 5u−s1−s2, 6u−s1−s2, 9u−
2s1 − 2s2}, then dimT 2

V (−m) = 1. Otherwise dimT 2
V (−m) = 0.

Proof This is a direct computation using formulae in [6, Section 5].

Remark 1.6.5. It immediately follows from the computation in [6,

Section 5] that T 2
V (−m) = 0 if there exists ai such that 〈m, ai〉 ≤ 0.

1.6.4 Verifying the conjectures

Since dimT 2
V = 5, the ideal of the closed embedding Def V ↪→ T 1

V has

at most 5 generators. We have the following:

Proposition 1.6.6. The equations of the closed embedding Def V ↪→ T 1
V
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are

tm1
3,1
tu = 0,

tm2
3,1
tu = 0,

tm1
3,1
tm2

2,1
+ tm1

2,1
tm2

3,1
= 0,

tm1
3,1
tm2

3,1
= 0,

t2m2
3,1
tm1

3,2
− t2m1

3,1
tm2

3,2
= 0.

Moreover, Def V is non-reduced and has exactly 3 irreducible compo-

nents; their equations inside T 1
V are:

(1) tm1
3,1

= tm2
3,1

= 0,

(2) tu = tm1
3,1

= tm1
2,1

= tm1
3,2

= 0,

(3) tu = tm2
3,1

= tm2
2,1

= tm2
3,2

= 0.

Every irreducible component of Def V is smooth and is a smoothing com-

ponent.

Proof The proof of the equations of Def V ↪→ T 1
V is postponed to the

next section and relies on some computer calculations performed with

Macaulay2. We now assume to know these equations.

The fact that Def V is non-reduced and has 3 irreducible components

C1, C2, C3 with the equations given above can be checked by taking the

primary decomposition of the ideal of Def V ↪→ T 1
V . For each i = 1, 2, 3,

from the equations of Ci it is obvious that Ci is smooth. We need to

prove that Ci is a smoothing component, i.e. the general fibre over Ci is

smooth.

The component C1 contains the 1-parameter deformation constructed

in Remark 1.6.2. The singular locus of the general fibre of this defor-

mation has 2 connected components with everywhere transverse A2-

singularities; therefore the general fibre of this deformation is smooth-

able.

In order to prove that the general fibre over C2 (resp. C3) is smooth,

we prove that the general fibre over the 2-parameter deformation of V

with parameters tm2
3,1

and tm1
2,2

(resp. tm1
3,1

and tm2
2,2

) is smooth. This

can be done by applying the jacobian criterion to the output of the

computer calculations that we will describe below.

We now illustrate Conjecture A and Conjecture B in our example. Let

C1, C2, C3 be the 3 irreducible components of Def V , whose equations are

given in Proposition 1.6.6. By Remark 1.2.3 Def(V, ∂V ) has 3 irreducible
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components, M1, M2, M3, each of which lie over exactly one of C1,

C2, C3. For each i ∈ {1, 2, 3} the smooth morphism Mi → Ci induces

a surjective linear map T0Mi → T0Ci of linear representations of the

torus SpecC[M ].

Let α, β and γ be the three 0-mutable polynomials with Newton

polytope F (see Example 1.2.12). By comparing the degrees of T0C1,

T0C2, T0C3 with the seeds S̃ (α), S̃ (β), S̃ (γ) in Example 1.4.3, we

have that α (resp. β, resp. γ) corresponds to M1 (resp. M2, resp. M3).

1.6.5 Computer computations

Here we present a proof of Proposition 1.6.6 which uses the software

Macaulay2 [17], in particular the package VersalDeformations [25, 31].

By observing the degrees of T 1
V (Lemma 1.6.1) and the degrees of T 2

V

(Lemma 1.6.4) it is immediate to see that each of the 5 equations of

Def V ↪→ T 1
V can only involve the following 9 variables:

tu tm1
3,1

tm1
2,1

tm1
3,2

tm1
2,2

tm2
3,1

tm2
2,1

tm2
3,2

tm2
2,2
.

We call the corresponding 9 degrees of T 1
V the ‘interesting’ degrees of

T 1
V . This implies that there is a smooth morphism Def V → G, where G

is a finite dimensional germ with embedding dimension 9. We now want

to use the computer to determine G.

We consider the vector 3

4

5

 ∈ N = Z3.

This gives a homomorphism M → Z and a Z-grading on on the algebra

C[σ∨∩M ] = H0(V,OV ), on T 1
V , and on T 2

V . We have chosen this partic-

ular Z-grading because the corresponding linear projection is injective

on the set {u,m1
3,1,m

1
2,1,m

1
3,2,m

1
2,2,m

2
3,1,m

2
2,1,m

2
3,2,m

2
2,2}, which will

allow us to identify our 9 variables above with the corresponding output

of Macaulay2 below. In the following tables we write down the degrees

in Z of the Hilbert basis of σ∨∩M , of the interesting degrees of T 1
V , and

of the degrees of T 2
V .

s1 z2 s4 z3 s3 z4 s2 u

9 7 5 3 4 6 8 5

−u −m1
3,1 −m1

2,1 −m1
3,2 −m1

2,2 −m2
3,1 −m2

2,1 −m2
3,2 −m2

2,2

−5 −6 −1 3 8 −7 −2 1 6
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4u− s1 4u− s2 5u− s1 − s2 6u− s1 − s2 9u− 2s1 − 2s2
−11 −12 −8 −13 −11

One can see that all non-interesting summands of T 1
V have degree ≥ 9.

Therefore we are interested in the summands of T 1
V with degree be-

tween −7 and 8. Now we run the following Macaulay2 code, which was

suggested to us by the referee.

S = QQ[s1,z2,s4,z3,s3,z4,s2,u,Degrees=>{9,7,5,3,4,6,8,5}];

M = matrix {{s1,z2,u,s2,z4},{z2,s4,z3,z4,s3}};

I = minors(2,M) +

ideal(s4*s3-z3^3,z2*s3-z3^2*u,z2*z4-z3*u^2,s1*z4-u^3);

needsPackage "VersalDeformations"

T1 = cotangentCohomology1(-7,8,I)

T2 = cotangentCohomology2(I)

(F,R,G,C) = versalDeformation(gens(I),T1,T2);

G

The output T1 describes how the equations of V ↪→ A8 are perturbed,

at the first order, by the coordinates t1, . . . , t9 of the interesting part of

T 1
V . From these perturbations one can compute the degrees of these coor-

dinates and discover the following conversion table between our notation

and the output of Macaulay2.

t1 t2 t3 t4 t5 t6 t7 t8 t9
tm2

3,1
tm2

3,2
tm2

2,2
tm2

2,1
tm1

3,1
tm1

3,2
tm1

2,2
tm1

2,1
tu

The output G describes the miniversal deformation space of V with

degrees between −7 and 8, i.e. the germ G we wanted to study. This

implies that G is the germ at the origin of the closed subscheme of A9

defined by the following equations:

t5t9 = 0,

t1t9 = 0,

t4t5 + t1t8 = 0,

t1t5 = 0,

t2t
2
5 − t21t6 = 0.

These equations are those in Proposition 1.6.6. The output F gives the

equations of the deformation of V over the germ G.

Remark 1.6.7. The equations of the germ G are only well defined up

to a homogeneous change of coordinates whose jacobian is the identity.
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In particular, the quadratic terms of these equations are well defined

and can be computed by analysing the cup product T 1
V ⊗T 1

V → T 2
V : this

can be done via toric methods [12, 13].
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