In this work, we present an innovative approach for damage detection of infrastructures on-edge devices, exploiting a brain-inspired algorithm. The proposed solution exploits recurrent spiking neural networks (LSNNs), which are emerging for their theoretical energy efficiency and compactness, to recognise damage conditions by processing data from low-cost accelerometers (MEMS) directly on the sensor node. We focus on designing an efficient coding of MEMS data to optimise SNN execution on a low-power microcontroller. We characterised and profiled LSNN performance and energy consumption on a hardware prototype sensor node equipped with an STM32 embedded microcontroller and a digital MEMS accelerometer. We used a hardware-in-the-loop environment with virtual sensors generating data on an SPI interface connected to the physical microcontroller to evaluate the system with a data stream from a real viaduct. We exploited this environment also to study the impact of different on-sensor encoding techniques, mimicking a bio-inspired sensor able to generate events instead of accelerations. Obtained results show that the proposed optimised embedded LSNN (eLSNN), when using a spike-based input encoding technique, achieves 54% lower execution time with respect to a naive LSNN algorithm implementation present in the state-of-the-art. The optimised eLSNN requires around 47 kCycles, which is comparable with the data transfer cost from the SPI interface. However, the spike-based encoding technique requires considerably larger input vectors to get the same classification accuracy, resulting in a longer pre-processing and sensor access time. Overall the event-based encoding techniques leads to a longer execution time (1.49×) but similar energy consumption. Moving this coding on the sensor can remove this limitation leading to an overall more energy-efficient monitoring system.

Spiking neural network-based near-sensor computing for damage detection in structural health monitoring

Barchi F.
Co-primo
;
Zanatta L.
Co-primo
;
Parisi E.;Burrello A.;Brunelli D.;Bartolini A.;Acquaviva A.
2021

Abstract

In this work, we present an innovative approach for damage detection of infrastructures on-edge devices, exploiting a brain-inspired algorithm. The proposed solution exploits recurrent spiking neural networks (LSNNs), which are emerging for their theoretical energy efficiency and compactness, to recognise damage conditions by processing data from low-cost accelerometers (MEMS) directly on the sensor node. We focus on designing an efficient coding of MEMS data to optimise SNN execution on a low-power microcontroller. We characterised and profiled LSNN performance and energy consumption on a hardware prototype sensor node equipped with an STM32 embedded microcontroller and a digital MEMS accelerometer. We used a hardware-in-the-loop environment with virtual sensors generating data on an SPI interface connected to the physical microcontroller to evaluate the system with a data stream from a real viaduct. We exploited this environment also to study the impact of different on-sensor encoding techniques, mimicking a bio-inspired sensor able to generate events instead of accelerations. Obtained results show that the proposed optimised embedded LSNN (eLSNN), when using a spike-based input encoding technique, achieves 54% lower execution time with respect to a naive LSNN algorithm implementation present in the state-of-the-art. The optimised eLSNN requires around 47 kCycles, which is comparable with the data transfer cost from the SPI interface. However, the spike-based encoding technique requires considerably larger input vectors to get the same classification accuracy, resulting in a longer pre-processing and sensor access time. Overall the event-based encoding techniques leads to a longer execution time (1.49×) but similar energy consumption. Moving this coding on the sensor can remove this limitation leading to an overall more energy-efficient monitoring system.
Barchi F.; Zanatta L.; Parisi E.; Burrello A.; Brunelli D.; Bartolini A.; Acquaviva A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/862566
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact