The Cluster HEritage project with XMM-Newton - Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE) is a three-mega-second Multi-Year Heritage Programme to obtain X-ray observations of a minimally-biased, signal-to-noise-limited sample of 118 galaxy clusters detected by Planck through the Sunyaev-Zeldovich effect. The programme, described in detail in this paper, aims to study the ultimate products of structure formation in time and mass. It is composed of a census of the most recent objects to have formed (Tier-1: 0.05 < z < 0.2; 2 × 1014 M⊙ < M500 < 9 × 1014 M⊙), together with a sample of the highest mass objects in the Universe (Tier-2: z < 0.6; M500 > 7.25 × 1014 M⊙). The programme will yield an accurate vision of the statistical properties of the underlying population, measure how the gas properties are shaped by collapse into the dark matter halo, uncover the provenance of non-gravitational heating, and resolve the major uncertainties in mass determination that limit the use of clusters for cosmological parameter estimation. We will acquire X-ray exposures of uniform depth, designed to obtain individual mass measurements accurate to 15 - 20% under the hydrostatic assumption. We present the project motivations, describe the programme definition, and detail the ongoing multi-wavelength observational (lensing, SZ, radio) and theoretical effort that is being deployed in support of the project.

Arnaud M., Ettori S., Pratt G.W., Rossetti M., Eckert D., Gastaldello F., et al. (2021). The Cluster HEritage project with XMM-Newton: Mass Assembly and Thermodynamics at the Endpoint of structure formation: I. Programme overview. ASTRONOMY & ASTROPHYSICS, 650, 1-25 [10.1051/0004-6361/202039632].

The Cluster HEritage project with XMM-Newton: Mass Assembly and Thermodynamics at the Endpoint of structure formation: I. Programme overview

Bonafede A.;Gitti M.;Vazza F.;
2021

Abstract

The Cluster HEritage project with XMM-Newton - Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE) is a three-mega-second Multi-Year Heritage Programme to obtain X-ray observations of a minimally-biased, signal-to-noise-limited sample of 118 galaxy clusters detected by Planck through the Sunyaev-Zeldovich effect. The programme, described in detail in this paper, aims to study the ultimate products of structure formation in time and mass. It is composed of a census of the most recent objects to have formed (Tier-1: 0.05 < z < 0.2; 2 × 1014 M⊙ < M500 < 9 × 1014 M⊙), together with a sample of the highest mass objects in the Universe (Tier-2: z < 0.6; M500 > 7.25 × 1014 M⊙). The programme will yield an accurate vision of the statistical properties of the underlying population, measure how the gas properties are shaped by collapse into the dark matter halo, uncover the provenance of non-gravitational heating, and resolve the major uncertainties in mass determination that limit the use of clusters for cosmological parameter estimation. We will acquire X-ray exposures of uniform depth, designed to obtain individual mass measurements accurate to 15 - 20% under the hydrostatic assumption. We present the project motivations, describe the programme definition, and detail the ongoing multi-wavelength observational (lensing, SZ, radio) and theoretical effort that is being deployed in support of the project.
2021
Arnaud M., Ettori S., Pratt G.W., Rossetti M., Eckert D., Gastaldello F., et al. (2021). The Cluster HEritage project with XMM-Newton: Mass Assembly and Thermodynamics at the Endpoint of structure formation: I. Programme overview. ASTRONOMY & ASTROPHYSICS, 650, 1-25 [10.1051/0004-6361/202039632].
Arnaud M.; Ettori S.; Pratt G.W.; Rossetti M.; Eckert D.; Gastaldello F.; Gavazzi R.; Kay S.T.; Lovisari L.; Maughan B.J.; Pointecouteau E.; Sereno M....espandi
File in questo prodotto:
File Dimensione Formato  
CHEX-MATE-2021_small.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/858538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 41
social impact