We study a class of degenerate elliptic operators (which is a slight extension of the sums of squares of real-analytic vector fields satisfying the Hörmander condition). We show that, in dimensions 2 and 3, for every operator L in such a class and for every distribution u such that Lu is real-analytic, the analytic singular support of u, singsuppu, is a “negligible” set. In particular, we provide (optimal) upper estimates for the Hausdorff dimension of singsuppu. Finally, we show that in dimension n≥4, there exists an operator in such a class and a distribution u such that singsuppu is of dimension n.

On the analytic singular support for the solutions of a class of degenerate elliptic operators

Albano, paolo;Mughetti, marco
2021

Abstract

We study a class of degenerate elliptic operators (which is a slight extension of the sums of squares of real-analytic vector fields satisfying the Hörmander condition). We show that, in dimensions 2 and 3, for every operator L in such a class and for every distribution u such that Lu is real-analytic, the analytic singular support of u, singsuppu, is a “negligible” set. In particular, we provide (optimal) upper estimates for the Hausdorff dimension of singsuppu. Finally, we show that in dimension n≥4, there exists an operator in such a class and a distribution u such that singsuppu is of dimension n.
2021
Albano, paolo; Mughetti, marco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/857247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact