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ON THE ANALYTIC SINGULAR SUPPORT FOR THE
SOLUTIONS OF A CLASS OF DEGENERATE

ELLIPTIC OPERATORS

PAOLO ALBANO AND MARCO MUGHETTI

Abstract. We study a class of degenerate elliptic operators (which
is a slight extension of the sums of squares of real analytic vector
fields satisfying Hörmander Condition). We show that, in dimen-
sion 2 and 3, for every operator L in such a class and for every
distribution u such that Lu is real analytic, the analytic singu-
lar support of u, sing suppu, is a “negligible” set. In particular,
we provide (optimal) upper estimates for the Hausdorff dimension
of sing suppu. Finally, we show that in dimension n ≥ 4, there
exists an operator in such a class and a distribution u such that
sing suppu is of dimension n.

1. Introduction and statement of the results

We study the (local) analytic regularity for a class of degenerate
elliptic operators with real analytic coefficients. In order to be definite,
throughout this paper we assume that Ω ⊂ Rn is a bounded domain
(n ≥ 2), let N ≥ 2 be an integer and let

Xj(x,D) =
n∑
k=1

ajk(x)Dk, (j = 1, . . . , N)

where ajk ∈ Cω(Ω;R), k = 1, . . . , n, j = 1, . . . , N and Dk =
∂xk√
−1

.

We assume

(H) for every x ∈ Ω the dimension of the Lie algebra generated by
X1, . . . , XN and their (possibly iterated) commutators is n.
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We consider the operator

(1.1) L(x,D) =
N∑

i,j=1

Xi(x,D)bij(x)Xj(x,D)+

N∑
j=1

cj(x)Xj(x,D) + d(x),

with bij, cj, d ∈ Cω(Ω;C), i, j = 1, . . . , N , and

[bij]i,j=1,...,N + [b̄ji]i,j=1,...,N > c,

where c is a positive constant. We consider the following problem:

(P) Let u ∈ D′(Ω) such that Lu is real analytic on a subdomain V ⊂ Ω.
Is u real analytic in V possibly except on a negligible set?

We recall that, even taking in (1.1) bij = δij and bj = d = 0, the
problem of the analytic regularity of the solutions of Lu = f with f
real analytic is open. It is well-known that if L is elliptic on Ω, then
sing suppu = ∅ (this is a classical result see e.g. [4], page 207). Here
sing suppu is the analytic singular support, i.e. x0 /∈ sing suppu if
and only if u is real analytic near x0. We point out that, as remarked
in [9] page 149, by assuming a constant rank condition, a second or-
der degenerate elliptic operator can be written as an operator sum of
squares of vector fields. Let us also recall that, for sums of squares, if
the coefficients of L are real analytic, Hörmander Condition (H) is a
necessary and sufficient condition for the C∞ hypoellipticity of L (see
[8], Théorème 2.2). On the other hand, the real analyticity of Lu does
not imply that u be real analytic (see [3]). Then, in general (without
additional assumptions on the operator L), one cannot expect that u
be a real analytic function whenever Lu is.

We refer the interested reader to [6] and [2] for an accurate descrip-
tion of the problem of the analytic hypoellipticity for operators sums
of squares and an updated description of the available regularity re-
sults. In this paper, we take a different attitude: instead of looking for
conditions ensuring the absence of the analytic singularities, we show
that, in low dimension, the set of the analytic singularities is negligible
(of Hausdorff dimension 0 for n = 2 and 2 for n = 3). More precisely,
we prove the following

Theorem 1.1. Let L be an operator of the form (1.1) and let u be a
distribution1 defined on Ω such that Lu is real analytic on a domain
V ⊂ Ω. Then,

1Really, by a result of Hörmander [9], u ∈ C∞(V ).
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(i) If n = 2, u is real analytic on V possibly except on a discrete set.
(ii) If n = 3, sing suppu∩V is contained in an analytic set of dimension
2.

It is well-known that the problem of regularity is a microlocal prob-
lem (i.e. it is appropriately formulated in the phase space taking into
account both the singular points and the related frequencies). We point
out that even if our results are stated in a local form they are in essence
microlocal. Indeed, they are based on the following (classical) facts:

(1) the analytic singular support of u is the projection (on the base)
of the analytic wave front set of u, WF (u) (see [10] Definition
3.1 and Theorem 3.2);

(2) WF (u) ⊆ WF (Lu) ∪ Char(L) (see [10] Theorem 5.4),

where

Char(L) = {(x, ξ) ∈ Ω× (Rn \ {0}) | Xj(x, ξ) = 0, j = 1, . . . , N}.

More precisely, we can reduce our vector fields to local standard
forms and, since we are working in low dimension, we can remove from
the characteristic set suitable regions (due to the fact that these re-
gions do not intersect the analytic wave front set of the distribution
u). In this way, we end up with a subset of the characteristic set whose
projection on the base–containing the analytic singular support of u–
is suitably small.

We recall that the analytic singular support of a solution of Lu = f ,
with f real analytic, may be the empty set. For instance, for n =
2, it is well-known that the operator L = D2

1 + x2p
1 D

2
2, where p is

a positive integer, is analytic hypoelliptic. On the other hand, for
L = D2

1 + (x2
1 + x2

2)D2
2, there exists a solution of the equation Lu = f ,

with f real analytic, such that u is not real analytic at the origin of
R2 (see [12]), i.e. sing suppu = {(0, 0)} (because of L is elliptic except
at (0, 0)). Let us also recall that, in the case n ≥ 3, the projection on
the base of Char(L), π(Char(L)), may be the whole Rn. For instance,
consider L = D2

1 + (D2 + x1D3)2. Then, π(Char(L)) = R3 but every
solution of Lu = f is real analytic where f is real analytic (this can
be seen as a very special case of a more general result see [15, 14]).
It is also well-known, that there exists a solution v (see (3.19)) of
(D2

1 + D2
2 + x2

1D
2
3)v = 0 such that sing supp v 6= ∅ (see [3]). One can

easily show that, for such a function, sing supp v is an analytic set of
dimension 1. On the other hand, in Section 3 we prove that, without
additional assumptions, Theorem 1.1(ii) is optimal. (The optimality of
Theorem 1.1(i) is a consequence of [12].) More precisely, we have the
following
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Proposition 1.1. There exists a solution of equation

(D2
1 +D2

2 + x2
1D

2
3)u = 0 in R×]−∞, 2[×R,

such that sing suppu = {(x1, x2, x3) ∈ R×]−∞, 2[×R | x1 = 0}.

For n ≥ 4, the analytic singular support may be a large set. Indeed,
we have the

Proposition 1.2. Let n ≥ 4, then there exists a solution of equation(
D2

1 + (D2 + x1D3)2 +
n∑
j=4

D2
j

)
u = 0

in ]−∞,−2[×R2×]−∞, 2[×Rn−4, such that

sing suppu =]−∞,−2[×R2×]−∞, 2[×Rn−4.

2. Proof of Theorem 1.1

Let us begin the proof of Theorem 1.1 by recalling a very special
case of a known result (see e.g. [1] page 61).

Theorem 2.2. (i) Let Ω ⊂ R2 be an open set and let

(2.2) X1 = Dx1 , Xj = aj(x1, x2)Dx2 , j = 2, . . . , N,

be real analytic vector fields satisfying Hörmander Condition. Consider
an operator L as in (1.1), suppose that Char(L) is a (real analytic) sym-

plectic manifold and let x0 ∈ π(Char(L)) = {x ∈ Ω |
∑N

s=2 a
2
s(x) = 0}.

If there exist ` ∈ {2, . . . , N}, m a positive integer and U , a neighbor-
hood of x0 in R2, such that the functions in (2.2) satisfy

(1) ∂i1aj(x) = 0, for every x ∈ U ∩ π(Char(L)), for every j ∈
{2, . . . , N} and i ∈ {1, . . . ,m− 1};

(2) ∂m1 a`(x0) 6= 0.

Then x0 /∈ sing suppu if x0 /∈ sing suppLu.

(ii) Let Ω ⊂ R3 an open set and let X1 = Dx1, X2 = D2+a(x1, x2, x3)Dx3

be real analytic vector fields satisfying Hörmander Condition. Consider
an operator L as in (1.1) and suppose that Char(L) is a (real analytic)
symplectic manifold. Then

(x0, ξ0) /∈ WF (u) if (x0, ξ0) /∈ WF (Lu).
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2.1. Proof of Theorem 1.1(i) (i.e. n = 2). By Assumption (H), for
every point x ∈ Ω there exist a least one vector field, say X1, and an
open subset W ⊂ V , such that X1 is not singular on W . Then, possibly
reducing W , we may rectify the vector field X1, using a real analytic
change of coordinates, and we may assume that

X1 = D1

Because of the compactness of Ω, in order to prove the result, it suffices
to show that a solution u has at most finitely many points of non
analyticity in such a set W . By means of a linear substitution, with
real analytic coefficients, acting on the vector fields we can assume that
the remaining vector fields are of the form

a(x1, x2)D1 or b(x1, x2)D2

(for suitable real analytic functions a and b). We observe that Hör-
mander Condition is retained by non-singular linear substitutions with
smooth coefficients. Let us also point out that the operator L w.r.t.
the “new” vector fields takes the form (1.1) for suitable coefficients.
Then the characteristic set of L is given by

Char(L) = {(x1, x2, 0, ξ2) | (x1, x2) ∈ W, ξ2 6= 0,

bj(x1, x2) = 0 ∀j ∈ J},
where J ⊆ {2, . . . , N} and bj(x1, x2) is a real analytic function on W ,
for every j ∈ J . Set

B(x) =
∑
j∈J

[bj(x)]2.

By Assumption (H), for every x̄ ∈ W there exists k ∈ N such that

(2.3)

{
∂jx1

B(x̄) = 0, ∀j = 1, . . . , k − 1,

∂kx1
B(x̄) 6= 0.

Let us take x̄ ∈ W ∩ π(Char(L)). Without loss of generality we may
assume that x̄ = 0 and that

W =]− δ, δ[×]− δ, δ[.
We observe that

W ∩ π(Char(L)) = {x ∈ W | B(x) = 0}.
Using (2.3) and the Weierstrass Preparation Theorem, we find, possibly
reducing W ,

(2.4) B(x) = B(x1, x2) = e(x1, x2)

(
xk1 +

k∑
j=1

Bj(x2)xk−j1

)
,
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for (x1, x2) ∈ W where e and Bj, j = 1, . . . , k, are real analytic
functions with Bj(0) = 0, j = 1, . . . , k, and e(x1, x2) 6= 0 for every
(x1, x2) ∈ W . Set

(2.5) f(x1, x2) = xk1 +
k∑
j=1

Bj(x2)xk−j1 .

Then, we have that

(2.6) W ∩ π(Char(L)) = {x ∈ W | f(x) = 0} .

By the Fundamental Theorem of Algebra, we have that there exist
z1(x2), . . . , zk(x2) ∈ C such that f(zj(x2), x2) = 0, for j = 1, . . . , k and
for every x2 ∈]− δ, δ[. Then, the discriminant is given by

D(x2) = Πi<j(zi(x2)− zj(x2))2 (x2 ∈]− δ, δ[).

We observe that D(·) is real analytic on ]− δ, δ[. (Indeed, it is a sym-
metric polynomial w.r.t. the roots z`. Then it can be written as a
polynomial of k variables evaluated at the elementary symmetric func-

tions s
(k)
i (x2) =

∑
1≤h1<...<hi≤k zh1(x2) . . . zhi(x2), i = 1, . . . , k. Then

the analytic regularity of D(·) is a direct consequence of the identities

s
(k)
j (x2) = (−1)jBj(x2), j = 1, . . . , k.)
Let us suppose that D(x2) = 0 for every x2 ∈]− δ, δ[ (otherwise we

may directly assume that f is of the same form as f̃ below). Then by

the results in [11] (Théorème page 18) there exists f̃ of the form (2.5)
but of degree (w.r.t. x1) strictly less than f such that

A := {(x1, x2) ∈]− δ, δ[2 | f(x1, x2) = 0} =

{(x1, x2) ∈]− δ, δ[2 | f̃(x1, x2) = 0},

and the discriminant of f̃ , D̃(·), is not identically zero on ]− δ, δ[. We

have that there exist k̃ functions, z̃j(x2), such that

f̃(x1, x2) = Πk̃
j=1(x1 − z̃j(x2)).

Then, the set A can be stratified as follows: since D̃(·) is real analytic,
it vanishes (at most) at finitely many points x̃i2, i = 1, . . . , `. Let

(2.7) wij = (z̃j(x̃
i
2), x̃i2) ∈ A, i = 1, . . . , ` and j = 1, . . . , k̃,

(these are the strata of dimension 0 where we have no control on the
singularities of u). Let

(y1, y2) ∈ A \ {wij | , i = 1, . . . , `, j = 1, . . . , k̃}.
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Then there exist ε > 0 and j ∈ {1, . . . , k̃} such that y1 = z̃j(y2), z̃j(·)
is a real analytic function in ]y2 − ε, y2 + ε[, and

(2.8) Qε(y)∩π(Char(L)) = Qε(y)∩{(z̃j(x2), x2) | x2 ∈]y2−ε, y2 +ε[}.

where

Qε(y) :=]y1 − ε, y1 + ε[×]y2 − ε, y2 + ε[.

The proof of Theorem 1.1(i) is completed if we show that

(2.9) Qε(y) ∩ {(z̃j(x2), x2) | x2 ∈]y2 − ε, y2 + ε[} ∩ sing suppu = ∅.

We observe that Char(L) ∩ π−1(Qε(y)) is a symplectic manifold. In
order to apply Theorem 2.2(i) we need to check Assumptions (1) and
(2). By the definition of the set A and (2.8), we deduce that

(2.10) f(x1, x2) = e](x1, x2)(x1 − z̃j(x2))2i, (x1, x2) ∈ Qε(y),

for a suitable i ∈ N and with e](·) strictly positive in Qε(y). ((2.10) can
be obtained by dividing f by x1 − z̃j(x2) as many times as possible.)
Then, we find that

b`(x1, x2) = e`(x1, x2)(x1 − z̃j(x2))i, (` ∈ J)

where e` are real analytic functions. Hence, there exists (at least) an
index `0 ∈ J such that e`0 is always different from zero on Qε(y). This
implies that Conditions (1) and (2) of Theorem 2.2(i) are satisfied with
m = i. Then, by Theorem 2.2(i), we deduce that (2.9) holds and we

conclude that sing suppu∩V ⊆ {wij | , i = 1, . . . , `, j = 1, . . . , k̃} (with
wij as in (2.7)).

2.2. Proof of Theorem 1.1(ii) (i.e. n = 3). As in the case of n = 2,
we may assume that

(2.11)

{
X1 = D1,

Xj =
∑3

s=2 ajs(x)Ds, j = 2, . . . , N,

for suitable real analytic functions ajs, j = 2, . . . , N and s = 2, 3.
There are two cases: either there exists a point x0 ∈ V such that at
x0 three of the vector fields X1, . . . , XN are linearly independent or we
are in the complementary case.

In the first case, possibly renaming the vector fields, we may assume
that X1, X2 and X3 are linearly independent at x0. Then, we consider
the real analytic function (defined on V )

f(x) = det

1 0 0
0 a22(x) a23(x)
0 a32(x) a33(x)

 .
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We have the decomposition

V = {x ∈ V | f(x) 6= 0} ∪ {x ∈ V | f(x) = 0},
where {x ∈ V | f(x) = 0} is an analytic set of dimension 2.

Hence, since L is elliptic (then analytic hypoelliptic) on the set {x ∈
V | f(x) 6= 0}, we conclude that

sing suppu ∩ V ⊆ {x ∈ V | f(x) = 0},
and the proof is completed.

Then, we may assume that, in V , there are at most two linearly
independent vector fields. Set

A =

{
x ∈ V |

N∑
j=2

3∑
s=2

(ajs(x))2 = 0

}
.

We observe that, by Hörmander Condition, V \ A 6= ∅. For any x0 ∈
V \ A there exists a component, say a22(·), such that a22(x0) 6= 0. Let
us consider the open set

V1 = {x ∈ V | a22(x) 6= 0}.
Modulo a (non-singular) substitution with real analytic coefficients, we
may assume that

(2.12)


X1 = D1,

X2 = D2 + b23(x)D3

Xj = bj3(x)D3, j = 3, . . . , N,

for suitable real analytic functions bj3, j = 2, . . . , N .
We remark that, by this substitution, the operator L can be rewritten

once more in the form (1.1). Let us also point out that the characteristic
set is (clearly) unchanged and that also the new vector fields satisfy
Hörmander Condition.
Case 1: N = 2.

Then

Char(L) ∩ π−1(V1) = {(x, 0,−b23(x)ξ3, ξ3) | with x ∈ V1, ξ3 6= 0}
and

Char(L) ∩ π−1(V1) = A ∪B
where

A = {(x, 0,−b23(x)ξ3, ξ3) | with x ∈ V1, ξ3 6= 0, ∂x1b23(x) 6= 0}
and

B = {(x, 0,−b23(x)ξ3, ξ3) | with x ∈ V1, ξ3 6= 0, ∂x1b23(x) = 0}.
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Then, by Theorem 2.2(ii), A ∩WF (u) = ∅, hence

π(A) ∩ sing suppu = ∅
and π(B) ⊆ {x ∈ V1 | ∂x1b23(x) = 0}. By Hörmander Condition
∂x1b23(x) cannot be identically zero and we obtain that

sing suppu ∩ V1 ⊆ π(B) ⊆ {x ∈ V1 | ∂x1b23(x) = 0}.
Then, we conclude that

sing suppu ∩ V ⊆ {x ∈ V | a22(x)∂x1b23(x) = 0}.
It remains to consider the complementary case:

Case 2: N > 2.
We can assume that there exists j ∈ {3, . . . , N} such that bj3(x) is

not identically zero on V1. Then, we conclude that

sing suppu ∩ V1 ⊆ π(Char(L)) ∩ V1 ⊆ {x ∈ V1 | bj3(x) = 0},
and

sing suppu ∩ V ⊆ {x ∈ V | a22(x)bj3(x) = 0}.
This completes our proof. �

3. Proof of Proposition 1.1

We consider the function

(3.13) u(x1, x2, x3) =
∞∑
n=1

e(x2−2)
√

2n−x2
1
2

2n cos(x32n),

for (x1, x2, x3) ∈ R×]−∞, 2[×R. A direct computation shows that

(3.14) (D2
1 +D2

2 + x2
1D

2
3)u(x1, x2, x3) = 0 in R×]−∞, 2[×R.

We claim that sing suppu = {0}×]−∞, 2[×R. We recall that

sing suppu ⊆ {(0, x2, x3) | (x2, x3) ∈]−∞, 2[×R}
(in other words, the analytic singular support of u is contained in the
projection on the base of the characteristic manifold). Then, in order to
complete the proof we show that for every point of the form (0, x2, x3),
with (x2, x3) ∈]−∞, 2[×R, we have that (0, x2, x3) ∈ sing suppu. For
this purpose let us begin with an elementary remark

Lemma 3.1. The set E = {πm/2n | m ∈ Z, n ∈ N} is dense in R.

Proof. For every x ∈ R we have that

[x2n/π]

2n
=
x

π
− {x2n/π}

2n
, (n ∈ N)
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(here [a] denotes the integer part of a while {a} stands for the fractional
part of a). Then∣∣∣∣π [x2n/π]

2n
− x
∣∣∣∣ ≤ π

|{x2n/π}|
2n

≤ π

2n
, (n ∈ N)

and the conclusion follows. �

Then it suffices to show that u is not analytic at every point of the
form (0, x2, x3) with x2 ∈] − ∞, 2[ and x3 ∈ E. Let (0, x2, x3) with
x2 ∈]−∞, 2[ and x3 ∈ E we claim that

(3.15) lim sup
h→∞

(
|Dh

3u(0, x2, x3)|
h!

) 1
h

= +∞.

We observe that (3.15) implies that

{0}×]−∞, 2[×E ⊆ sing suppu (⊆ {0}×]−∞, 2[×R),

i.e. sing suppu = {0}×]−∞, 2[×R since it is a closed set (and E = R).
Then, let x3 = πm/2` (with m ∈ Z and ` ∈ N) and let k > max{2, `}.
We have that

(3.16) D2k

3 u(0, x2, x3) =
∞∑
n=1

e(x2−2)
√

2n(2n)2k cos(x32n).

(Here we used the fact that, for k ≥ 2, D2k cosx = cosx.) Then, we
find that

(3.17) D2k

3 u(0, x2, x3) =
∞∑

n=`+1

e(x2−2)
√

2n(2n)2k

+
∑̀
n=1

e(x2−2)
√

2n(2n)2k cos(x32n) ≥
∞∑

n=`+1

e(x2−2)
√

2n(2n)2k − `(2`)2k .

(Here we used the fact that cos(2nx3) = cos(2n−`πm) = 1 for n > `.)
In view of (3.17), we deduce that

(3.18) |D2k

3 u(0, x2, x3)|+ `(2`)2k ≥ e(x2−2)
√

22k
(22k)2k .
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Using (3.18), the fact that (2`)2k/(2k!) = o(1), as k → ∞, and 2k ≥
(2k!)

1

2k , we conclude that

lim sup
h→+∞

(
|Dh

3u(0, x2, x3)|
h!

) 1
h

≥ lim
k→∞

(
|D(2k)

3 u(0, x2, x3)|
2k!

) 1

2k

=

lim
k→∞

ex2−2 22k

(2k!)
1

2k

≥ lim
k→∞

ex2−22k = +∞.

Remark 3.1. We point out that the construction of the function u is
based on some theoretical considerations which we think will shed some
light on Formula (3.13). It is well-known that a non-analytic solution
of (3.14) is given by

(3.19) v(x1, x2, x3) =

∫ +∞

0

eiρx3e−
x2
1
2
ρe(x2−1)

√
ρ dρ.

Furthermore, one can show that sing supp v = {0}×] −∞, 1[×{0}. In
order to construct the function u the idea consists in taking a superpo-
sition of the integrand in (3.19) of the form

w(x1, x2, x3) =

∫ +∞

0

eiρx3e−
x2
1
2
ρe(x2−1)

√
ρ ĝ(ρ) dρ,

for a suitable g which is not analytic at any point of R. A classical
example of such a function is

g(x) =
1

π

∞∑
n=1

e−
√

2n cos(2nx).

We claim that if (0, 0, x3) ∈ sing suppw for every x3 ∈ R, then (0, x2, x3) ∈
sing suppw, for every (x2, x3) ∈] − ∞, 1[×R. Indeed, if (0, 0, x̄3) ∈
sing suppw, for a suitable x̄3 ∈ R, then there exists ξ̄3 6= 0 such that
(0, 0, x̄3, 0, 0, ξ̄3) ∈ WF (w) and

F = {(0, x2, x̄3, 0, 0, ξ̄3) | x2 ∈]−∞, 1[}
is the Hamiltonian leaf through the point (0, 0, x̄3, 0, 0, ξ̄3). Then, it is
well-known that if F∩WF (w) 6= ∅ then F ⊂ WF (w) (see [13] Theorem
4.2). Hence, our claim follows from the fact that π(F ) ⊆ sing suppw.
A direct computation shows that

w(0, 0, x3) =
∞∑
n=1

e−2
√

2neix32n , x3 ∈ R

(the real part of w(0, 0, x3) modulo an irrelevant factor 2 in the first
exponential behaves like the function g) and we conclude that w is not
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real analytic at (0, 0, x3) for every x3 ∈ R. The function u given in
(3.13) is the real part of w.

4. Proof of Proposition 1.2

We observe that in order to prove Proposition 1.2, it suffices to con-
sider the case of n = 4. Indeed, if we find a function u = u(x1, x2, x3, x4)
as in the statement of the proposition, then, for n > 4, by taking
v(x1, . . . , xn) = u(x1, x2, x3, x4) the conclusion follows. Then let us
consider the equation

(4.20)
(
D2

1 + (D2 + x1D3)2 +D2
4

)
u = 0 in ]−∞,−2[×R2×]−∞, 2[,

and the function

(4.21) u(x1, x2, x3, x4)

=
∞∑

n,m,s=1

e−2s+(x4−2)
√

2n−
√

2m− (x1+s2m−n)2

2
2n cos(x2s2

m + x32n),

where (x1, x2, x3, x4) ∈]−∞,−2[×R2×]−∞, 2[. A direct computation
shows that u is a solution of (4.20). As in the proof of Proposition 1.1
it suffices to show that the function u is not real analytic on a dense
set in ]−∞,−2[×R2×]−∞, 2[. For this purpose let us take

(4.22) x̄ =
(
− s̄1

2s̄2
, π
m̄1

2m̄2
, π

n̄1

2n̄2
, x̄4

)
with s̄1, s̄2, m̄2, n̄2 ∈ N, m̄1, n̄1 ∈ Z, x̄4 < 2 and s̄1/2

s̄2 > 2. Arguing
as in the proof of Proposition 1.1, one can show that the set of all the
points as x̄ is dense in ]−∞,−2[×R2×]−∞, 2[. We want to show that

(4.23) lim sup
h→∞

(
|Dh

3u(x̄)|
h!

) 1
h

= +∞.

For

(4.24) k > max{2, n̄2, m̄2, s̄2},
we have that

(4.25) D2k

3 u(x̄) =
∞∑

n,m,s=1

e−2s+(x̄4−2)
√

2n−
√

2m− (x̄1+s2m−n)2

2
2n

· (2n)2k cos(x̄2s2
m + x̄32n).

We observe that, in order to prove (4.23), it suffices to show that

(4.26) lim
k→∞

(
|D2k

3 u(x̄)|
2k!

) 1

2k

= +∞.
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We split the sum in (4.25) into two sums:

(4.27) the sum for n,m, s ≥ 1 such that 2n ≥ s2m,

(4.28) the sum for n,m, s ≥ 1 such that 2n < s2m.

We have that

I +

(
|D2k

3 u(x̄)|
2k!

) 1

2k

≥ II

where

I =

(∑′
n,m,s e

ψnms(2n)2k | cos(x̄2s2
m + x̄32n)|

2k!

) 1

2k

and

II =


∣∣∣∑′′n,m,s eψnms(2n)2k cos(x̄2s2

m + x̄32n)
∣∣∣

2k!


1

2k

,

with

ψnms = −2s+ (x̄4 − 2)
√

2n −
√

2m − (x̄1 + s2m−n)2

2
2n.

(Here we denote by
∑′

n,m,s the sum for n,m, s ≥ 1 such that (4.27)

holds, while
∑′′

n,m,s stands for the analogous sum under Condition

(4.28).) We claim that I yields a bounded contribution to the limit.
Indeed, if we take n,m and s as in (4.27), we have that

(4.29) |x̄1 + s2m−n| ≥ |x̄1| − 1 ≥ 1

(in the last inequality we used the fact that x̄1 < −2). Hence, by
(4.29), we find

I ≤

∑′n,m,s e−2s+(x̄4−2)
√

2n−
√

2m− (x̄1+s2m−n)2

2
2n(2n)2k

2k!


1

2k

≤

(∑′
n,m,s e

−2s+(x̄4−2)
√

2n−
√

2m−2n−1
(2n)2k

2k!

) 1

2k

.

By using the elementary inequality

e−
t
2 ta ≤ e−a(2a)a, (a > 1, t ≥ 0),

we have
e−2n−1

(2n)2k ≤ e−2k(2k+1)2k .
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Then

I ≤

(∑′
n,m,s e

−2s+(x̄4−2)
√

2n−
√

2me−2k(2k+1)2k

2k!

) 1

2k

≤

(∑
n,m,s

′
e−2s+(x̄4−2)

√
2n−
√

2m

) 1

2k
(
e−2k(2k+1)2k

2k!

) 1

2k

.

Using the Stirling formula, we get(
e−2k(2k+1)2k

2k!

) 1

2k

∼

(
e−2k(2k+1)2k

(2k)2ke−2k
√
π2k+1

) 1

2k

=
2

(π2k+1)
1

2k+1

→ 2

as k →∞. Hence, we obtain that I is bounded.
Let us consider the term II: we split the sum

∑′′ into three parts
Σ′′(i), i = 1, 2, 3, as described below. To each of these sums corresponds

II(i) (which is defined as II with
∑′′ replaced by

∑′′
(i)). Then, we have

(4.30) II + II(1) + II(2) ≥ II(3).

Estimate of II(1): in
∑′′

(1) we take the sum
∑′′ with the additional

constraint n ≤ n̄2 (we recall that n̄2 is defined in (4.22), in particular
it depends only on the point x̄). We find that

II(1) ≤

(∑
n,m,s

′′
e−2s+(x̄4−2)

√
2n−
√

2m

) 1

2k
(

(2n̄2)2k

2k!

) 1

2k

,

with the RHS uniformly bounded w.r.t. k.

Estimate of II(2): we take the sum for n,m, s ≥ 1, with 2n < s2m

and the additional constraints n > n̄2 and m ≤ m̄2. Then, by (4.28),
we find

II(2) ≤

(∑′′

(2)
e−2s+(x̄4−2)

√
2n−
√

2m (2n)2k

2k!

) 1

2k

≤

(∑′′

(2)
e−s+(x̄4−2)

√
2n−
√

2m · e
−ss2k(2m)2k

2k!

) 1

2k
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Using, once more, the elementary inequality e−ss2k ≤ e−2k(2k)2k and
the fact that m ≤ m̄2, we have

II(2) ≤

(∑′′

(2)
e−s+(x̄4−2)

√
2n−
√

2m · e
−2k(2k)2k

2k!

) 1

2k

2m̄2

which is once more a uniformly bounded term w.r.t. k. It remains to
consider

Estimate of II(3): we take the sum for n,m, s ≥ 1, with 2n < s2m

and the additional constraints n > n̄2, m > m̄2. Then, we have

II(3) =


∣∣∣∑′′(3)e

ψnms(2n)2k cos(x̄2s2
m + x̄32n)

∣∣∣
2k!


1

2k

=

∑′′(3)e
−2s+(x̄4−2)

√
2n−
√

2m− (x̄1+s2m−n)2

2
2n(2n)2k

2k!


1

2k

(since cos(x̄2s2
m + x̄32n) = 1 for n > n̄2 and m > m̄2). We recall that

s̄1/2
s̄2 > 2 (see (4.22)), then we may choose s = s̄1 and

(4.31) n−m = s̄2 (> 0).

Indeed, with this choice, we have, in view of (4.22), that x̄1+s2m−n = 0,
whence 2n < s2m. Then, we find

(4.32) II(3) ≥

(
e−2s̄1+(x̄4−2)

√
2n−
√

2m(2n)2k

2k!

) 1

2k

,

for every n > n̄2, m > m̄2 with n−m = s̄2.
In particular, we may take

n = 2k and m = 2k − s̄2 in (4.32),

(we observe that, by (4.24), n = 2k > n̄2 and m = 2k − s̄2 > m̄2).
Furthermore, by (4.31),

√
2n >

√
2m and we find that

II(3) ≥

(
e−2s̄1+(x̄4−2)

√
2n−
√

2m(2n)2k

2k!

) 1

2k

≥

(
e−2s̄1

(
(2k)2k

2k!

)
(2k)2ke(x̄4−3)

√
22k

) 1

2k

.



16 PAOLO ALBANO AND MARCO MUGHETTI

By the estimate (
(2k)2k

2k!

)
≥ 1,

we deduce that

II(3) ≥ e−
s̄1

2k−1 +x̄4−3 2k.

Then, we conclude

lim
k→+∞

II(3) ≥ lim
k→+∞

e−
s̄1

2k−1 +x̄4−3 2k = +∞,

i.e.

lim
k→∞

(
|D2k

3 u(x̄)|
2k!

) 1

2k

= +∞.

This completes our proof of Proposition 1.2.
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[13] J.Sjöstrand, Analytic wavefront sets and operators with multiple character-
istics, Hokkaido Math. J. 12 (1983), no. 3, part 2, 392–433.

[14] D.S.Tartakoff, The local real analyticity of solutions to 2b and the ∂̄–
Neumann problem, Acta Math. 145 (1980), no. 3-4, 177–204.



SINGULAR SUPPORT FOR DEGENERATE ELLIPTIC OPERATORS 17

[15] F.Treves, Analytic hypo–ellipticity of a class of pseudodifferential operators
with double characteristics and applications to the ∂̄–Neumann problem, Comm.
Partial Differential Equations 3 (1978), no. 6-7, 475–642.

Dipartimento di Matematica, Università di Bologna, Piazza di Porta
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