The interaction between carbon dioxide and planar carboxylic acids has been investigated through the analysis of the microwave spectrum of the acrylic acid·CO2 complex and quantum chemical modeling of the R-COOH·(CO2)1,16 clusters, where R = H, CH2CH. As regards the 1 : 1 compounds, two species, involving the s-cis and s-trans conformers of acrylic acid were observed. For both of them, a similar bidentate interaction arises between the carbonyl group of CO2 and the carboxylic group of the organic acid, leading to the formation of a planar six-membered ring. The binding energy is estimated to be De ≃ 21 kJ mol-1, 1/3 being the energy contributions of the tetrel to hydrogen bonds, respectively. In the 1 : 16 clusters, the ring arrangement is broken, allowing for the interaction of the acid with several CO2 molecules. The CO2 molecules completely surround formic acid, whereas, in the case of acrylic acid, they tend to avoid the allyl chain. This journal is

Characterizing hydrogen and tetrel bonds in clusters of CO2with carboxylic acids

Li W.
Primo
;
Melandri S.
Secondo
;
Evangelisti L.;Calabrese C.;Vigorito A.
Penultimo
;
Maris A.
Ultimo
2021

Abstract

The interaction between carbon dioxide and planar carboxylic acids has been investigated through the analysis of the microwave spectrum of the acrylic acid·CO2 complex and quantum chemical modeling of the R-COOH·(CO2)1,16 clusters, where R = H, CH2CH. As regards the 1 : 1 compounds, two species, involving the s-cis and s-trans conformers of acrylic acid were observed. For both of them, a similar bidentate interaction arises between the carbonyl group of CO2 and the carboxylic group of the organic acid, leading to the formation of a planar six-membered ring. The binding energy is estimated to be De ≃ 21 kJ mol-1, 1/3 being the energy contributions of the tetrel to hydrogen bonds, respectively. In the 1 : 16 clusters, the ring arrangement is broken, allowing for the interaction of the acid with several CO2 molecules. The CO2 molecules completely surround formic acid, whereas, in the case of acrylic acid, they tend to avoid the allyl chain. This journal is
Li W.; Melandri S.; Evangelisti L.; Calabrese C.; Vigorito A.; Maris A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/853163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact