The design and development of stable molecular iron electrocatalysts able to work with low overpotential in the oxidation of water to molecular oxygen is an essential challenge for sustainable energy applications. Our group has recently developed stable iron(0) N-heterocyclic carbene (NHC) complexes bearing a non-innocent cyclopentadienone (Cp=O) ligand. This peculiar ligands combination is herein exploited to tune the electrochemistry of the corresponding complexes: NHCs regulate the anodic process in a suitable potential region for oxidation of water to O2and cyclopentadienone promotes a mono-electronic redox process through the formation of a radical complex (1˙). The synergic effect of these ligands on iron complexes makes them suitable, for the first time, as low valent electrocatalysts for water oxidation. The electrocatalytic activity was determined in water/THF with added KOH. Complex1shows the best catalytic activity and competitive efficiency in terms of both TOF (up to 52 s−1) and overpotential (320 mV).

Cingolani A., Gualandi I., Scavetta E., Cesari C., Zacchini S., Tonelli D., et al. (2021). Cyclopentadienone-NHC iron(0) complexes as low valent electrocatalysts for water oxidation. CATALYSIS SCIENCE & TECHNOLOGY, 11(4), 1407-1418 [10.1039/d0cy02329a].

Cyclopentadienone-NHC iron(0) complexes as low valent electrocatalysts for water oxidation

Cingolani A.;Gualandi I.
;
Scavetta E.;Cesari C.;Zacchini S.;Tonelli D.;Zanotti V.;Franchi P.;Lucarini M.;Nanni D.;Mazzoni R.
2021

Abstract

The design and development of stable molecular iron electrocatalysts able to work with low overpotential in the oxidation of water to molecular oxygen is an essential challenge for sustainable energy applications. Our group has recently developed stable iron(0) N-heterocyclic carbene (NHC) complexes bearing a non-innocent cyclopentadienone (Cp=O) ligand. This peculiar ligands combination is herein exploited to tune the electrochemistry of the corresponding complexes: NHCs regulate the anodic process in a suitable potential region for oxidation of water to O2and cyclopentadienone promotes a mono-electronic redox process through the formation of a radical complex (1˙). The synergic effect of these ligands on iron complexes makes them suitable, for the first time, as low valent electrocatalysts for water oxidation. The electrocatalytic activity was determined in water/THF with added KOH. Complex1shows the best catalytic activity and competitive efficiency in terms of both TOF (up to 52 s−1) and overpotential (320 mV).
2021
Cingolani A., Gualandi I., Scavetta E., Cesari C., Zacchini S., Tonelli D., et al. (2021). Cyclopentadienone-NHC iron(0) complexes as low valent electrocatalysts for water oxidation. CATALYSIS SCIENCE & TECHNOLOGY, 11(4), 1407-1418 [10.1039/d0cy02329a].
Cingolani A.; Gualandi I.; Scavetta E.; Cesari C.; Zacchini S.; Tonelli D.; Zanotti V.; Franchi P.; Lucarini M.; Sicilia E.; Mazzone G.; Nanni D.; Maz...espandi
File in questo prodotto:
File Dimensione Formato  
Fe-WOC-post-print.pdf

Open Access dal 06/01/2022

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 715.6 kB
Formato Adobe PDF
715.6 kB Adobe PDF Visualizza/Apri
d0cy02329a1.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/852303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact