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Cyclic voltammetry characterizations
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Figure S1. CV (scan rate = 0.05 V s ') of triscarbonyl cyclopentadienone iron complex 6: irreversible
redox process at +1.15 V; two irreversible processes in the cathodic side at -2.08 V and -2.60 V.
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Figure S2. CVs in 2mM solution of 1 and 1°at 0.05 V s™!.
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Figure S3. CVs in 2 mM solution (THF/H20, 4:1) of 2 with addition of KOH (scan rate = 0.05 V

s).
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Figure S4. CVs in 2 mM solution (THF/H20, 4:1) of 3 with addition of KOH (scan rate =0.05 V

s).
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Figure S5. CVs in 2 mM solution (THF/H20, 4:1) of 4 with addition of KOH (scan rate =0.05 V

sh).
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Figure S6. CVs in 2 mM solution (THF/H20, 4:1) of 5 with addition of KOH (scan rate = 0.05 V

s).
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Redox behavior of 2 and 5 in THF/H,0 (4:1)

The amino group plays a key role in the redox behavior of complexes 2 and 5. Taking into accont
complex 2 (Figure S6) a first wave which can be considered irreversible is present in the anodic side
at a scan rate equal to 0.050 V s°!, together with the main redox peak (Il in Figure S6), which displays
a backward trace, even if much smaller. The peak potential of the latter has been reported in Table 1
(main text). The backward wave of I increases with the scan rate increase, suggesting the occurrence
of a chemical reaction after the electron transfer.! Moreover, a new redox wave (1) appears during
the second and following cycles which is probably related to a product of the chemical reaction
following the electron transfer in II process. Concomitantly, the I redox wave that is always present
in the first cycle appears also in the following ones at scan rates equal or lower than 0.020 V s’
suggesting that it involves a compound which is in equilibrium with the complex.! The reaction before
the electron transfer is probably of acid-base nature considering that complex 2 contains an amino
group. Since process I never exhibits a backward peak, the overall process should be generated by a
chemical reaction, followed by an electron transfer that is, in turn, followed by a chemical reaction

(CEC mechanism).
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Figure S7 Cyclic voltammogram of 2 recorded at a scan rate of 0.05 V s~ in THF:H20 (4:1)
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Figure S8 Cyclic voltammograms (reported in normalized current) of 2 recorded at different scan
rates in THF:H20 (4:1) after stabilization of the signal.
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Foot of the wave analysis: estimation of turn over frequency

The foot of the wave analysis was performed in agreement with the recent literature>**> by exploiting

this equation:

K q:RT 1
icat _ 2-242ncat( C%'tv )2
Ip 1+ e(%(E—EO))

where ncat is the number of electrons involved in the catalytic reaction, Kcat is the pseudo-first-order
rate constant, R is the universal gas constant, T is the temperature, F is the Faraday constant, E the
potential, E the standard potential of the redox mediator, v is the scan rate, icat the current recorded
in the presence of the substrate and 1v is the peak current of the catalyst in absence of the substrate.
The CV of the studied complex was recorded in absence of KOH before carrying out the experiment

to study electrocatalysis in order to determine i value. Icat vs E curves were recorded in the presence

of the substrate in agreement with the procedure described in the experimental section. lf—“t values
b

were plotted as a function of 1 / . Figure S12 shows an example of the graph obtained
1+ e

(ae(E—E9))

for the complex 1. The linear part of the wave was interpolated and the slope resulted:

KcatRT)%
Fv

slope = 2.242n,4(

Consequently, Kcat can be calculated.

The Turnover frequency (TOF) is related to Kcat by the equation:

2 Kcat

TOF =
1+ e(lf_T(E_EO)

When E assume E° value, TOF value for Oz evolution at the standard potential of the used catalyst

resulted equal to Kecat.

From the slope of the lc—‘” Vs

1 / F or, 1t 18 possible to calculate Kca, which corresponds to the TOF.
lp 1 + e(ﬁ(E_E ))
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Estimation of O, reduction potential
The thermodynamic potential of Oz reduction during the electrocatalytic experiments was estimated

from the Gibbs free energy in THF and water mixture (AGreaction (THF)).. AGreaction (THF) Was calculated

by the equation:
AGreaction (THF) = AG%eaction(120)— 2 RT In X120 + 4 AGuanster + 4 RT In aon-

Where AGreaction(t120) is the standard Gibbs free energy of Oz reduction in aqueous environment,

Xmo is the molar fraction of water in the mixture, AGuansfer is the OH™ free energy for the transfer

water to THF:H20 mixture and aowu- is the activity of OH™ that was fixed at 0.01.

AGreaction(i120) Was calculated from the standard potential reported by Atkins® while AGiranster as

reported by Marcus.”
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Figure S10. 'H-NMR of 3.
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Figure S11. >*C-NMR of 3
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Figure S12. ESI-MS spectrum of 3.
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Figure S13. 'H-NMR of 4.
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Figure S14. >*C-NMR of 4.
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Figure S15. ESI-MS spectrum of 4.
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Figure S16. 'H-NMR of 5-Boc.
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Figure S17. *C-NMR of 5-Boc.
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Figure S18. ESI-MS spectrum of 5-Boc.
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Figure S20. °C-NMR of 5.
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Figure S21. ESI-MS spectrum of 5.
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Figure S22. ESI-MS of the 1° + spin trap experiment.
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EPR characterization of 1°
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Figure S2. EPR measurement on 1° in solid (red line) and THF solution (blu line).
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Table S1 Crystal data and experimental details for 4.

Formula C20H30FeN204S12
Fw 474.49
T,K 100(2)
A, A 0.71073
Crystal system Monoclinic
Space group P21/n
a, A 8.4055(6)
b, A 18.3319(12)
c, A 15.0466(10)
B° 92.570(2)
Cell Volume, A3 2316.2(3)
z 4
Dc, g cm™ 1.361
u, mm! 0.782
F(000) 1000

Crystal size, mm

0.21x0.18x0.15

0 limits, °

1.752-27.997

Reflections collected

28207

Independent reflections

5504 [Rin= 0.0488]

Data / restraints /parameters 5504/0/270
Goodness on fit on F? 1.421
R (1> 20(1)) 0.0751
WR:2 (all data) 0.1319
Largest diff. peak and hole, e A~ 0.705 / —0.549
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Table S2. Most relevant geometrical parameters: bond lengths (A), valence angles (degrees), together
with IRC CO stretching frequencies v in cm™! for the investigated complexes compared with the
available experimental counterparts.

6 1 1 4
Fe-Cl 1.790 1.764 1.7472 1.801 1.764 1.7672
Fe-C2 1.791 1.764 1.754 1.842 1.769 1.778
Fe-C3 1.807 2.015 1.996 2.022 2.013 1.977
Fe-C6 2.444 2.408 2.360 2.320 2.426 2.376
Fe-C7 2.159 2.203 2.177 2.181 2.223 2171
Fe-C8 2.106 2.089 2.067 2.172 2.074 2.073
Fe-C9 2.123 2.153 2.091 2.246 2.124 2.073
Fe- 2.167 2.207 2.153 2.266 2.230 2.139
Cl10
C1-01 1.153 1.159 1.155 1.147 1.158 1.144
C2-02 1.153 1.161 1.153 1.148 1.159 1.147
C3-03 1.149
C3-N1 - 1.373 1.365 1.365 1.373 1.361
C3-N2 - 1.366 1.360 1.364 1.366 1.367
C6-04 1.232 1.250 1.249 1.236 1.247 1.241
Cl-Fe- 93.6 92.7 91.5 90.1 92.8 95.8
C2
Cl-Fe- 98.4 93.4 97.1 91.2 93.7 90.2
C3
C2-Fe- 98.2 98.5 94.1 98.4 99.1 100.0
C3
Fe-Cé6- 139.3 134.5 134.1 129.5 134.2 136.7
03
v(CO) 2048 1983, 1922° | 2086 2023° 1974° | 2065 1991,
1931°

%n italic are crystallographic data; "experimental values.
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