In this note we show that there exist cusped hyperbolic 3-mani-folds that embed geodesically but cannot bound geometrically. Thus, being a geometric boundary is a non-trivial property for such manifolds. Our result complements the work by Long and Reid on geometric boundaries of compact hyperbolic 4-manifolds and by Kolpakov, Reid, and Slavich on embedding arithmetic hyperbolic manifolds.

Kolpakov A., Reid A.W., Riolo S. (2020). Many cusped hyperbolic 3-manifolds do not bound geometrically. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 148(5), 2233-2243 [10.1090/proc/14573].

Many cusped hyperbolic 3-manifolds do not bound geometrically

Riolo S.
2020

Abstract

In this note we show that there exist cusped hyperbolic 3-mani-folds that embed geodesically but cannot bound geometrically. Thus, being a geometric boundary is a non-trivial property for such manifolds. Our result complements the work by Long and Reid on geometric boundaries of compact hyperbolic 4-manifolds and by Kolpakov, Reid, and Slavich on embedding arithmetic hyperbolic manifolds.
2020
Kolpakov A., Reid A.W., Riolo S. (2020). Many cusped hyperbolic 3-manifolds do not bound geometrically. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 148(5), 2233-2243 [10.1090/proc/14573].
Kolpakov A.; Reid A.W.; Riolo S.
File in questo prodotto:
File Dimensione Formato  
ProcAmerMathSoc148-2020.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 507.64 kB
Formato Adobe PDF
507.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/851820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact