Persistent homology enables fast and computable comparison of topological objects. We give some instances of a recent extension of the theory of persistence, guaranteeing robustness and computability for relevant data types, like simple graphs and digraphs. We focus on categorical persistence functions that allow us to study in full generality strong kinds of connectedness—clique communities, k-vertex, and k-edge connectedness—directly on simple graphs and strong connectedness in digraphs.

Bergomi, M.G., Ferri, M., Vertechi, P., Zuffi, L. (2021). Beyond Topological Persistence: Starting from Networks. MATHEMATICS, 9(23), 3079-3079 [10.3390/math9233079].

Beyond Topological Persistence: Starting from Networks

Bergomi, Mattia G.;Ferri, Massimo
;
2021

Abstract

Persistent homology enables fast and computable comparison of topological objects. We give some instances of a recent extension of the theory of persistence, guaranteeing robustness and computability for relevant data types, like simple graphs and digraphs. We focus on categorical persistence functions that allow us to study in full generality strong kinds of connectedness—clique communities, k-vertex, and k-edge connectedness—directly on simple graphs and strong connectedness in digraphs.
2021
Bergomi, M.G., Ferri, M., Vertechi, P., Zuffi, L. (2021). Beyond Topological Persistence: Starting from Networks. MATHEMATICS, 9(23), 3079-3079 [10.3390/math9233079].
Bergomi, Mattia G.; Ferri, Massimo; Vertechi, Pietro; Zuffi, Lorenzo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/846985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact