A coprime commutator in a profinite group G is an element of the form [x, y], where x and y have coprime order and an anti-coprime commutator is a commutator [x, y] such that the orders of x and y are divisible by the same primes. In the present paper, we establish that a profinite group G is finite-by-pronilpotent if the cardinality of the set of coprime commutators in G is less than 2ℵ0. Moreover, a profinite group G has finite commutator subgroup G′ if the cardinality of the set of anti-coprime commutators in G is less than 2ℵ0.
Detomi E., Morigi M., Shumyatsky P. (2021). Strong conciseness of coprime and anti-coprime commutators. ANNALI DI MATEMATICA PURA ED APPLICATA, 200(3), 945-952 [10.1007/s10231-020-01020-2].
Strong conciseness of coprime and anti-coprime commutators
Morigi M.;
2021
Abstract
A coprime commutator in a profinite group G is an element of the form [x, y], where x and y have coprime order and an anti-coprime commutator is a commutator [x, y] such that the orders of x and y are divisible by the same primes. In the present paper, we establish that a profinite group G is finite-by-pronilpotent if the cardinality of the set of coprime commutators in G is less than 2ℵ0. Moreover, a profinite group G has finite commutator subgroup G′ if the cardinality of the set of anti-coprime commutators in G is less than 2ℵ0.File | Dimensione | Formato | |
---|---|---|---|
DMS_countablycomms_revised5 (002).pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
428.05 kB
Formato
Adobe PDF
|
428.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.