A coprime commutator in a profinite group G is an element of the form [x, y], where x and y have coprime order and an anti-coprime commutator is a commutator [x, y] such that the orders of x and y are divisible by the same primes. In the present paper, we establish that a profinite group G is finite-by-pronilpotent if the cardinality of the set of coprime commutators in G is less than 2ℵ0. Moreover, a profinite group G has finite commutator subgroup G′ if the cardinality of the set of anti-coprime commutators in G is less than 2ℵ0.

Detomi E., Morigi M., Shumyatsky P. (2021). Strong conciseness of coprime and anti-coprime commutators. ANNALI DI MATEMATICA PURA ED APPLICATA, 200(3), 945-952 [10.1007/s10231-020-01020-2].

Strong conciseness of coprime and anti-coprime commutators

Morigi M.;
2021

Abstract

A coprime commutator in a profinite group G is an element of the form [x, y], where x and y have coprime order and an anti-coprime commutator is a commutator [x, y] such that the orders of x and y are divisible by the same primes. In the present paper, we establish that a profinite group G is finite-by-pronilpotent if the cardinality of the set of coprime commutators in G is less than 2ℵ0. Moreover, a profinite group G has finite commutator subgroup G′ if the cardinality of the set of anti-coprime commutators in G is less than 2ℵ0.
2021
Detomi E., Morigi M., Shumyatsky P. (2021). Strong conciseness of coprime and anti-coprime commutators. ANNALI DI MATEMATICA PURA ED APPLICATA, 200(3), 945-952 [10.1007/s10231-020-01020-2].
Detomi E.; Morigi M.; Shumyatsky P.
File in questo prodotto:
File Dimensione Formato  
DMS_countablycomms_revised5 (002).pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 428.05 kB
Formato Adobe PDF
428.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/846155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact