We present a combinatorial criterion on reflexive polytopes of dimension 3 which gives a local-to-global obstruction for the smoothability of the corresponding Fano toric threefolds. As a result, we show an example of a singular Gorenstein Fano toric threefold which has compound Du Val, hence smoothable, singularities but is not smoothable.
Petracci A. (2020). Some examples of non-smoothable Gorenstein Fano toric threefolds. MATHEMATISCHE ZEITSCHRIFT, 295(1-2), 751-760 [10.1007/s00209-019-02369-8].
Some examples of non-smoothable Gorenstein Fano toric threefolds
Petracci A.
2020
Abstract
We present a combinatorial criterion on reflexive polytopes of dimension 3 which gives a local-to-global obstruction for the smoothability of the corresponding Fano toric threefolds. As a result, we show an example of a singular Gorenstein Fano toric threefold which has compound Du Val, hence smoothable, singularities but is not smoothable.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
main (3) (2).pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.