Background: Low muscle mass is associated with sarcopenia and increased mortality. Muscle mass, especially that of the limbs, is commonly estimated by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). However, BIA-based predictive equations for estimating lean appendicular soft tissue mass (ALST) do not take into account body fat distribution, an important factor influencing DXA and BIA measurements. Objectives: To develop and cross-validate a BIA-based equation for estimating ALST with DXA as criterion, and to compare our new formula to three previously published models. Methods: One-hundred eighty-four older adults (140 women and 44 men) (age 71.5 ± 7.3 years, body mass index 27.9 ± 5.3 kg/m2) were recruited. Participants were randomly split into validation (n = 118) and cross-validation groups (n = 66). Bioelectrical resistance was obtained with a phase-sensitive 50 kHz BIA device. Results: A BIA-based model was developed for appendicular lean soft tissue mass [ALST (kg) = 5.982 + (0.188 × S2 / resistance) + (0.014 × waist circumference) + (0.046 × Wt) + (3.881 × sex) − (0.053 × age), where sex is 0 if female or 1 if male, Wt is weight (kg), and S is stature (cm) (R2 = 0.86, SEE = 1.35 kg)]. Cross validation revealed r2 of 0.91 and no mean bias. Two of three previously published models showed a trend to significantly overestimate ALST in our sample (p < 0.01). Conclusions: The new equation can be considered valid, with no observed bias and trend, thus affording practical means to quantify ALST mass in older adults.

Predictive equation for assessing appendicular lean soft tissue mass using bioelectric impedance analysis in older adults: Effect of body fat distribution / Toselli S.; Campa F.; Matias C.N.; de Alencar Silva B.S.; dos Santos V.R.; Maietta Latessa P.; Gobbo L.A.. - In: EXPERIMENTAL GERONTOLOGY. - ISSN 0531-5565. - ELETTRONICO. - 150:(2021), pp. 111393.1-111393.6. [10.1016/j.exger.2021.111393]

Predictive equation for assessing appendicular lean soft tissue mass using bioelectric impedance analysis in older adults: Effect of body fat distribution

Toselli S.;Campa F.
;
Maietta Latessa P.;
2021

Abstract

Background: Low muscle mass is associated with sarcopenia and increased mortality. Muscle mass, especially that of the limbs, is commonly estimated by dual-energy X-ray absorptiometry (DXA) or bioimpedance analysis (BIA). However, BIA-based predictive equations for estimating lean appendicular soft tissue mass (ALST) do not take into account body fat distribution, an important factor influencing DXA and BIA measurements. Objectives: To develop and cross-validate a BIA-based equation for estimating ALST with DXA as criterion, and to compare our new formula to three previously published models. Methods: One-hundred eighty-four older adults (140 women and 44 men) (age 71.5 ± 7.3 years, body mass index 27.9 ± 5.3 kg/m2) were recruited. Participants were randomly split into validation (n = 118) and cross-validation groups (n = 66). Bioelectrical resistance was obtained with a phase-sensitive 50 kHz BIA device. Results: A BIA-based model was developed for appendicular lean soft tissue mass [ALST (kg) = 5.982 + (0.188 × S2 / resistance) + (0.014 × waist circumference) + (0.046 × Wt) + (3.881 × sex) − (0.053 × age), where sex is 0 if female or 1 if male, Wt is weight (kg), and S is stature (cm) (R2 = 0.86, SEE = 1.35 kg)]. Cross validation revealed r2 of 0.91 and no mean bias. Two of three previously published models showed a trend to significantly overestimate ALST in our sample (p < 0.01). Conclusions: The new equation can be considered valid, with no observed bias and trend, thus affording practical means to quantify ALST mass in older adults.
2021
Predictive equation for assessing appendicular lean soft tissue mass using bioelectric impedance analysis in older adults: Effect of body fat distribution / Toselli S.; Campa F.; Matias C.N.; de Alencar Silva B.S.; dos Santos V.R.; Maietta Latessa P.; Gobbo L.A.. - In: EXPERIMENTAL GERONTOLOGY. - ISSN 0531-5565. - ELETTRONICO. - 150:(2021), pp. 111393.1-111393.6. [10.1016/j.exger.2021.111393]
Toselli S.; Campa F.; Matias C.N.; de Alencar Silva B.S.; dos Santos V.R.; Maietta Latessa P.; Gobbo L.A.
File in questo prodotto:
File Dimensione Formato  
h_11585_843271_aam.pdf

Open Access dal 07/05/2022

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/843271
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact