We show that the Quot scheme QuotA3(Or, n) admits a symmetric obstruction theory, and we compute its virtual Euler characteristic. We extend the calculation to locally free sheaves on smooth 3-folds, thus refining a special case of a recent Euler characteristic calculation of Gholampour–Kool. We then extend Toda’s higher rank DT/PT correspondence on Calabi–Yau 3-folds to a local version centered at a fixed slope stable sheaf. This generalises (and refines) the local DT/PT correspondence around the cycle of a Cohen–Macaulay curve. Our approach clarifies the relation between Gholampour–Kool’s functional equation for Quot schemes, and Toda’s higher rank DT/PT correspondence.

Beentjes S.V., Ricolfi A.T. (2021). Virtual counts on Quot schemes and the higher rank local DT/PT correspondence. MATHEMATICAL RESEARCH LETTERS, 28(4), 967-1032 [10.4310/MRL.2021.V28.N4.A2].

Virtual counts on Quot schemes and the higher rank local DT/PT correspondence

Ricolfi A. T.
2021

Abstract

We show that the Quot scheme QuotA3(Or, n) admits a symmetric obstruction theory, and we compute its virtual Euler characteristic. We extend the calculation to locally free sheaves on smooth 3-folds, thus refining a special case of a recent Euler characteristic calculation of Gholampour–Kool. We then extend Toda’s higher rank DT/PT correspondence on Calabi–Yau 3-folds to a local version centered at a fixed slope stable sheaf. This generalises (and refines) the local DT/PT correspondence around the cycle of a Cohen–Macaulay curve. Our approach clarifies the relation between Gholampour–Kool’s functional equation for Quot schemes, and Toda’s higher rank DT/PT correspondence.
2021
Beentjes S.V., Ricolfi A.T. (2021). Virtual counts on Quot schemes and the higher rank local DT/PT correspondence. MATHEMATICAL RESEARCH LETTERS, 28(4), 967-1032 [10.4310/MRL.2021.V28.N4.A2].
Beentjes S.V.; Ricolfi A.T.
File in questo prodotto:
File Dimensione Formato  
1811.09859 (1).pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 413.36 kB
Formato Adobe PDF
413.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/842031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 7
social impact