Let S be a Borel subset of a Polish space and F the set of bounded Borel functions f:S→R. Let an(⋅)=P(Xn+1∈⋅∣X1,…,Xn) be the n-th predictive distribution corresponding to a sequence (Xn) of S-valued random variables. If (Xn) is conditionally identically distributed, there is a random probability measure μ on S such that ∫fdan−→−a.s.∫fdμ for all f∈F. Define Dn(f)=dn{∫fdan−∫fdμ} for all f∈F, where dn>0 is a constant. In this note, it is shown that, under some conditions on (Xn) and with a suitable choice of dn, the finite dimensional distributions of the process Dn={Dn(f):f∈F} stably converge to a Gaussian kernel with a known covariance structure. In addition, E{φ(Dn(f))∣X1,…,Xn} converges in probability for all f∈F and φ∈Cb(R).

Berti, P., Pratelli, L., Rigo, P. (2021). A central limit theorem for predictive distributions. MATHEMATICS, 9(24), 1-11 [10.3390/math9243211].

A central limit theorem for predictive distributions

Rigo Pietro
2021

Abstract

Let S be a Borel subset of a Polish space and F the set of bounded Borel functions f:S→R. Let an(⋅)=P(Xn+1∈⋅∣X1,…,Xn) be the n-th predictive distribution corresponding to a sequence (Xn) of S-valued random variables. If (Xn) is conditionally identically distributed, there is a random probability measure μ on S such that ∫fdan−→−a.s.∫fdμ for all f∈F. Define Dn(f)=dn{∫fdan−∫fdμ} for all f∈F, where dn>0 is a constant. In this note, it is shown that, under some conditions on (Xn) and with a suitable choice of dn, the finite dimensional distributions of the process Dn={Dn(f):f∈F} stably converge to a Gaussian kernel with a known covariance structure. In addition, E{φ(Dn(f))∣X1,…,Xn} converges in probability for all f∈F and φ∈Cb(R).
2021
Berti, P., Pratelli, L., Rigo, P. (2021). A central limit theorem for predictive distributions. MATHEMATICS, 9(24), 1-11 [10.3390/math9243211].
Berti, Patrizia; Pratelli, Luca; Rigo, Pietro
File in questo prodotto:
File Dimensione Formato  
mathematics-09-03211-v3.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 269.62 kB
Formato Adobe PDF
269.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/841767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact