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Abstract: Let S be a Borel subset of a Polish space and F the set of bounded Borel functions f : S→ R.
Let an(·) = P

(
Xn+1 ∈ · | X1, . . . , Xn) be the n-th predictive distribution corresponding to a sequence

(Xn) of S-valued random variables. If (Xn) is conditionally identically distributed, there is a random
probability measure µ on S such that

∫
f dan

a.s.−→
∫

f dµ for all f ∈ F. Define Dn( f ) = dn
{∫

f dan −∫
f dµ

}
for all f ∈ F, where dn > 0 is a constant. In this note, it is shown that, under some

conditions on (Xn) and with a suitable choice of dn, the finite dimensional distributions of the process
Dn =

{
Dn( f ) : f ∈ F

}
stably converge to a Gaussian kernel with a known covariance structure. In

addition, E
{

ϕ(Dn( f )) | X1, . . . , Xn
}

converges in probability for all f ∈ F and ϕ ∈ Cb(R).

Keywords: bayesian predictive inference; central limit theorem; conditional identity in distribution;
exchangeability; predictive distribution; stable convergence

MSC: 60B10; 60G25; 60G09; 60F05; 62F15; 62M20

1. Introduction

All random elements appearing in the sequel are defined on a common probability
space, say (Ω,A, P). We denote by S a Borel subset of a Polish space and by B the Borel
σ-field on S. We let

P =
{

probability measures on B
}

and

F =
{

real bounded Borel functions on S
}

.

Moreover, if λ ∈ P and f ∈ F, we write λ( f ) to denote

λ( f ) =
∫

f dλ.

In other terms, depending on the context, λ is regarded as a function on B or a function
on F. This slight abuse of notation is quite usual (see, e.g., [1,2]) and very useful for the
purposes of this note.

Let
X = (X1, X2, . . .)

be a sequence of S-valued random variables and

F0 = {∅, Ω} and Fn = σ(X1, . . . , Xn).

The predictive distributions of X are the random probability measures on (S,B) given by

an(·) = P
(
Xn+1 ∈ · | Fn) for all n ≥ 0.
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Under some conditions, there is a further random probability measure µ on (S,B)
such that

µ( f ) a.s.
= lim

n
an( f ) for each f ∈ F. (1)

For instance, condition (1) holds if X is exchangeable. More generally, it holds if X is
conditionally identically distributed (c.i.d.), as defined in Section 2. Note also that, since
S is separable, condition (1) implies an → µ weakly. Regarding an and µ as measurable
functions from Ω into P , one obtains

P
(
{ω ∈ Ω : an,ω → µω weakly}

)
= 1.

Assume condition (1), fix a sequence dn of positive constants, and define

Dn( f ) = dn
{

an( f )− µ( f )
}

for each f ∈ F.

This note deals with the process

Dn =
{

Dn( f ) : f ∈ F
}

.

Our goal is to show that, under some conditions on X and with a suitable choice of the
constants dn, the finite-dimensional distributions of Dn stably converge, as n → ∞, to a
certain Gaussian limit.

To be more precise, we recall that a kernel on (S,B) is a measurable map α : S → P .
This means that α(x) ∈ P , for each x ∈ S, and the function x 7→ α(x)(A) is B-measurable
for each A ∈ B. In what follows, we write

α(x)( f ) =
∫

f (y) α(x)(dy) for all x ∈ S and f ∈ F.

Next, as in [3], suppose the predictive distributions of X satisfy the recursive equation

an+1 = qn an + (1− qn) α(Xn+1) a.s. for all n ≥ 0, (2)

where q0, q1, . . . ∈ (0, 1) are constants and α is a kernel on (S,B). Moreover, let

ν(·) = P
(
X1 ∈ ·)

be the marginal distribution of X1. Under condition (2), X is c.i.d. whenever α is a regular
conditional distribution for ν given a sub-σ-field G ⊂ B; see ([3] Section 5). Hence, we
assume

α(·)(A) = Eν(1A | G), ν-a.s., (3)

for all A ∈ B and some sub-σ-field G ⊂ B. For instance, condition (3) holds if

α(x) = δx for all x ∈ S

where δx denotes the unit mass at the point x (just let G = B). In addition, we assume

∑
n
(1− qn)

2 < ∞ and lim
n

dn sup
k≥n

(1− qk−1) = 0

where

dn =

(
∑
k≥n

(1− qk)
2

)−1/2

.

In this framework, it is shown that(
Dn( f1), . . . , Dn( fp)

)
−→ Np(0, Σ) stably (4)
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for all p ≥ 1 and all f1, . . . , fp ∈ F, where Σ is the random covariance matrix with entries

σjk =
∫

α(x)( f j) α(x)( fk) µ(dx)− µ( f j) µ( fk).

We actually prove something more than (4). Let Cb(R) denote the set of real bounded
continuous functions on R. Then, it is shown that

E
{

ϕ
(

Dn( f )
)
| Fn

} P−→ N (0, σ2)(ϕ) (5)

for all f ∈ F and ϕ ∈ Cb(R), where

σ2 =
∫

α(x)( f )2 µ(dx)− µ( f )2.

Based on (5), it is not hard to deduce condition (4).

Before concluding the Introduction, several remarks are in order.

(i) A remarkable special case is α(x) = δx for all x ∈ S. Indeed, Equation (2) holds with
α = δ in some meaningful situations, including Dirichlet sequences; see ([3] Section
4) for other examples. Thus, suppose α = δ. Then, the above formulae reduce to
σjk = µ( f j fk)− µ( f j) µ( fk) and σ2 = µ( f 2)− µ( f )2. Moreover, if ν is non-atomic and

n

∏
j=0

qj → 0 and ∑
n

n

∏
j=0

qj = ∞,

then µ takes the form
µ

a.s.
= ∑

n
Vn δYn

where (Vn) and (Yn) are independent sequences and (Yn) is i.i.d. with Y1 ∼ ν; see ([3]
Theorem 20) and [4] for details.

(ii) Let l∞(G) be the set of real bounded functions on G, where G is any subset of F. For
instance, if S = R, one could take G =

{
1(−∞,x] : x ∈ R

}
. In view of (4), a natural

question is whether Dn has a limit in distribution when l∞(G) is equipped with a suitable
distance. As an example, l∞(G) could be equipped with the uniform distance (as in [1,2])
or with some weaker distance (as in [5]). Even if natural, this question is neglected in
this note. We hope and plan to investigate it in a forthcoming paper.

(iii) For fixed f ∈ F, condition (4) provides some information on the convergence rate
of an( f ) to µ( f ). Define Ln = un |an( f ) − µ( f )| where un > 0 is any sequence of

constants. Then, condition (4) yields Ln
P−→ 0 whenever un/dn → 0. Furthermore,

Ln
P−→ ∞ provided un/dn → ∞ and σ2 > 0 a.s.

(iv) The condition limn dn supk≥n(1− qk−1) = 0 is just a technical assumption which guar-
antees that, asymptotically, there are no dominating terms. In a sense, this condition
is analogous to the weak Lindeberg’s condition in the classical CLT for independent
summands.

(v) From a Bayesian point of view, µ can be seen as a random parameter of the data
sequence X. This is quite clear if X is exchangeable, for, in this case, X is conditionally
i.i.d. given µ. If X is only c.i.d., the role of µ is not as crucial, but µ still contributes
to specify the probability distribution of X; see ([3] Section 2.1). Thus, in a Bayesian
framework, conditions (4)–(5) may be useful to make (asymptotic) inference about µ.
To this end, an alternative could be proving a limit theorem for Wn = wn (µn − µ),
where wn is a suitable constant and µn = (1/n) ∑n

j=1 δXj the empirical measure.
However, Dn has two advantages with respect to Wn. It usually converges at a better
rate and the variance of the limit distribution is smaller; see, e.g., Example 3.
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(vi) Conditions (4)–(5) are our main results. They can be motivated in at least two ways.
Firstly, from the theoretical perspective, conditions (4)–(5) fit into the results concern-
ing the asymptotic behavior of conditional expectations (see, e.g., [6–8] and references
therein). Secondly, from the practical perspective, conditions (4)–(5) play a role in
all those fields where predictive distributions are basic objects. The main example
is Bayesian predictive inference. Indeed, the predictive distributions investigated
in this note have been introduced in connection with Bayesian prediction problems;
see [3]. Another example is the asymptotic behavior of certain urn schemes. Related
subjects, where (4)–(5) are potentially useful, are empirical processes for dependent
data, Glivenko-Cantelli-type theorems and merging of opinions. Without any claim of
being exhaustive, a list of references is: [3,5,9–21].

2. Preliminaries

In this note, Np(0, C) denotes the Gaussian law on the Borel sets of Rp with mean 0
and covariance matrix C, where C is symmetric and semidefinite positive. If p = 1 and
c ≥ 0 is a scalar, we write N (0, c) instead of N1(0, c) and

N (0, c)(ϕ) =
∫

ϕ(x)N (0, c)(dx)

for all bounded measurable ϕ : R → R. Note that, if Σ is a random covariance matrix,
Np(0, Σ) is a random probability measure on the Borel sets of Rp.

Let us briefly recall stable convergence. Let A+ = {H ∈ A : P(H) > 0}. Fix a random
probability measure K on (S,B) and define

λH(A) = E{K(A) | H} for all A ∈ B and H ∈ A+.

Each λH is a probability measure on B. Then, Xn converges stably to K, written Xn → K
stably, if

P(Xn ∈ · | H) −→ λH weakly for all H ∈ A+.

In particular, Xn converges in distribution to λΩ. However, stable convergence is stronger
than convergence in distribution. To see this, take a further random variable X : Ω → S.

Then, Xn
P−→ X if, and only if, Xn → δX stably. Thus, stable convergence is strictly

connected to convergence in probability. Moreover, (Xn, X) → K × δX stably whenever
Xn → K stably. Therefore, if Xn converges stably, (Xn, X) still converges stably for any
S-valued random variable X.

We next turn to conditional identity in distribution. Say that X is conditionally identically
distributed (c.i.d.) if

P
(
Xk ∈ · | Fn

)
= P

(
Xn+1 ∈ · | Fn

)
a.s. for all k > n ≥ 0.

Thus, at each time n, the future observations (Xk : k > n) are identically distributed given
the past. This is actually weaker than exchangeability. Indeed, X is exchangeable if, and
only if, it is stationary and c.i.d.

C.i.d. sequences were introduced in [9,22] and then investigated in various papers;
see, e.g., [3–5,11,23–29].

The asymptotics of c.i.d. sequences is similar to that of exchangeable ones. To see this,
suppose X is c.i.d. and define the empirical measures

µn =
1
n

n

∑
j=1

δXj .
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Then, there is a random probability measure µ on (S,B) such that

µ(A)
a.s.
= lim

m
µm(A) for each fixed A ∈ B.

It follows that

E
{

µ(A) | Fn
}
= lim

m
E
{

µm(A) | Fn
}

= lim
m

1
m

m

∑
j=n+1

P
(
Xj ∈ A | Fn

)
= P

(
Xn+1 ∈ A | Fn

)
a.s.

for all n ≥ 0 and A ∈ B. Therefore, as in the exchangeable case, the predictive distributions
can be written as

an(·) = P
(
Xn+1 ∈ · | Fn

)
= E

{
µ(·) | Fn

}
a.s.

Using the martingale convergence theorem, this implies

µ( f ) a.s.
= lim

n
E
{

µ( f ) | Fn
}
= lim

n
an( f ) for all f ∈ F.

Furthermore, X is asymptotically exchangeable, in the sense that the probability
distribution of the shifted sequence (Xn, Xn+1, . . .) converges weakly to an exchangeable
probability measure on (S∞,B∞).

Finally, we state a technical result to be used later on.

Lemma 1. Let (Yn) be a sequence of real integrable random variables, adapted to the filtration
(Fn), and

Zn = E(Yn+1 | Fn).

Let V be a real non-negative random variable and 0 < b1 < b2 < . . . an increasing sequence
of constants, such that bn ↑ ∞ and bn/bn+1 → 1. Suppose (Y2

n) is uniformly integrable, Zn
a.s.−→ Z

for some random variable Z, and define

Tn = bn (Zn − Z).

Then,
E
{

ϕ(Tn) | Fn
} P−→ N (0, V)(ϕ) for all ϕ ∈ Cb(R)

provided

b2
n ∑

k≥n
(Zk − Zk−1)

2 P−→ V; (6)

lim
n

bn E

{
sup
k≥n
|Zk − Zk−1|

}
= 0; (7)

∑
k≥n

E
∣∣∣E(Zk+1 | Fk)− Zk

∣∣∣ = o(1/bn). (8)

Proof. Just repeat the proof of ([10] Theorem 1) with bn in the place of
√

n.

3. Main Result

Let us go back to the notation of Section 1. Recall that qn ∈ (0, 1) is a constant for each
n ≥ 0 and dn =

(
∑k≥n(1− qk)

2)−1/2. We aim to prove the following CLT.
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Theorem 1. Assume conditions (2)–(3) and

∑
n
(1− qn)

2 < ∞ and lim
n

dn sup
k≥n

(1− qk−1) = 0.

Then, there is a random probability measure µ on (S,B) such that

µ( f ) a.s.
= lim

n
an( f ) and E

{
ϕ
(

Dn( f )
)
| Fn

} P−→ N (0, σ2)(ϕ)

for all f ∈ F and ϕ ∈ Cb(R), where

σ2 =
∫

α(x)( f )2 µ(dx)− µ( f )2.

As a consequence, (
Dn( f1), . . . , Dn( fp)

)
−→ Np(0, Σ) stably

for all p ≥ 1 and all f1, . . . , fp ∈ F where the covariance matrix Σ has entries

σjk =
∫

α(x)( f j) α(x)( fk) µ(dx)− µ( f j) µ( fk).

Proof. Due to conditions (2)–(3), X is c.i.d.; see ([3] Section 5). Hence, as noted in Section 2,
there is a random probability measure µ on (S,B) such that

an( f ) a.s.
= E

{
µ( f ) | Fn

}
for all f ∈ F.

By martingale convergence, it follows that an( f ) a.s.−→ µ( f ) for all f ∈ F.

We next prove condition (5). Fix f ∈ F and define

bn = dn, Yn = an( f ), Z = µ( f ) and V = σ2.

Then, (Y2
n) is uniformly integrable (for f is bounded) and bn satisfies the conditions of

Lemma 1. Moreover,

Zn = E(Yn+1 | Fn) = E
{

E
(
µ( f ) | Fn+1

)
| Fn

}
= E

{
µ( f ) | Fn

}
= an( f ) a.s.

so that Zn
a.s.−→ Z. Therefore, Lemma 1 applies. Hence, to prove (5), it suffices to check

conditions (6)–(8).
Let c = sup| f |. Since E(Zk+1 | Fk) = Zk a.s., condition (8) is trivially true. Moreover,

condition (2) implies

Zk − Zk−1 = ak( f )− ak−1( f )
= qk−1 ak−1( f ) + (1− qk−1) α(Xk)( f )− ak−1( f )
= (1− qk−1)

{
α(Xk)( f )− ak−1( f )

}
a.s. for all k ≥ 1.

Hence, condition (7) holds, since

dn E

{
sup
k≥n
|Zk − Zk−1|

}
≤ 2 c dn sup

k≥n
(1− qk−1) −→ 0.

It remains to prove condition (6), namely

d2
n ∑

k≥n
(1− qk−1)

2 {α(Xk)( f )− ak−1( f )
}2 P−→ σ2.
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First note that, since ak−1( f )2 a.s.−→ µ( f )2 as k→ ∞, one obtains

d2
n ∑

k≥n
(1− qk−1)

2 ak−1( f )2 =
∑k≥n(1− qk−1)

2 ak−1( f )2

∑k≥n(1− qk)2
a.s.−→ µ( f )2.

Next, define

Rk = α(Xk)( f )2 and Mn = d2
n ∑

k≥n
(1− qk−1)

2{Rk − E(Rk | Fk−1)
}

.

Then,
E(M2

n) = d4
n ∑k≥n(1− qk−1)

4E
{(

Rk − E(Rk | Fk−1)
)2}

≤ 4 c4d4
n ∑k≥n(1− qk−1)

4

≤ 4 c4 d2
n supk≥n(1− qk−1)

2 · d2
n ∑k≥n(1− qk−1)

2

−→ 0.

Moreover,

E(Rk | Fk−1) = E
{∫

α(x)( f )2 µ(dx) | Fk−1

}
a.s.−→

∫
α(x)( f )2 µ(dx).

Therefore,

d2
n ∑

k≥n
(1− qk−1)

2 Rk = Mn + d2
n ∑

k≥n
(1− qk−1)

2 E(Rk | Fk−1)
P−→
∫

α(x)( f )2 µ(dx).

By the same argument, it follows that

d2
n ∑

k≥n
(1− qk−1)

2 α(Xk)( f ) ak−1( f ) P−→ µ( f )
∫

α(x)( f ) µ(dx).

In addition, as proved in the Claim below,∫
α(x)( f ) µ(dx) a.s.

= µ( f ).

Collecting all pieces together, one finally obtains

d2
n ∑

k≥n
(1− qk−1)

2 {α(Xk)( f )− ak−1( f )
}2 P−→ µ( f )2 +

∫
α(x)( f )2 µ(dx)− 2 µ( f )2 = σ2.

Hence, condition (6) holds.

This concludes the proof of (5). We next prove that (5)⇒ (4). Let p ≥ 1 and f1, . . . , fp ∈
F. Fix u1, . . . , up ∈ R and define

Un =
p

∑
j=1

ujDn( f j) and σ2
u = ∑

j,k
ujukσjk.

Moreover, for each H ∈ A+, define the probability measure

λH(A) = E
{
N (0, σ2

u)(A) | H
}

for each Borel set A ⊂ R.

We have to show that

P(Un ∈ · | H) −→ λH weakly for each H ∈ A+. (9)
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To this end, call φH the characteristic function of λH , namely

φH(t) = E
(∫

eitxN (0, σ2
u)(dx) | H

)
= E

(
e−t2 σ2

u/2 | H
)

for all t ∈ R.

Letting f = ∑
p
j=1 uj f j, one obtains

Un = Dn( f ) and σ2
u =

∫
α(x)( f )2 µ(dx)− µ( f )2.

Therefore, condition (5) yields

E
(

ei t Un
)
= E

(
E
{

ei t Dn( f ) | Fn

})
−→ E

(
e−t2 σ2

u/2
)
= φΩ(t)

for each t ∈ R. Hence, condition (9) holds for H = Ω. Next, suppose H ∈ ⋃n Fn and
P(H) > 0. Then, for large n, one obtains

E
(

1H ei t Un
)
= E

(
1H E

{
ei t Dn( f ) | Fn

})
.

Hence, for each t ∈ R, condition (5) still implies

P(H) φH(t) = E
(

1H e−t2 σ2
u/2
)
= lim

n
E
(

1H E
{

ei t Dn( f ) | Fn

})
= lim

n
E
(

1H ei t Un
)

.

Therefore, condition (9) holds whenever H ∈ ⋃n Fn and P(H) > 0. Based on this fact, by
standard arguments, condition (9) easily follows for each H ∈ A+.

To conclude the proof of the Theorem, it remains only to show that:

Claim:
∫

α(x)( f ) µ(dx) a.s.
= µ( f ) for all f ∈ F.

Proof of the Claim: By (3), α is a regular conditional distribution for ν given a sub-σ-
field of B, where ν is the marginal distribution of X1. Therefore, as proved in ([3] Lemma 6),
there is a set A ∈ B such that ν(A) = 1 and∫

α(z)( f ) α(x)(dz) = α(x)( f ) for all x ∈ A and f ∈ F.

Since X is c.i.d. (and, thus, identically distributed) one also obtains P(Xn ∈ A) = ν(A) = 1
for all n ≥ 1.

Having noted these facts, fix f ∈ F. Since a0 = ν and α is a regular conditional
distribution for ν, ∫

α(x)( f ) a0(dx) = a0( f ).

Moreover, if
∫

α(x)( f ) an(dx) = an( f ) a.s. for some n ≥ 0, then∫
α(x)( f ) an+1(dx) = qn

∫
α(x)( f ) an(dx) + (1− qn)

∫
α(x)( f ) α(Xn+1)(dx)

= qn an( f ) + (1− qn) α(Xn+1)( f )
= an+1( f ) a.s.

By induction, one obtains
∫

α(x)( f ) an(dx) = an( f ) a.s. for each n ≥ 0. Hence,∫
α(x)( f ) µ(dx) = lim

n

∫
α(x)( f ) an(dx) = lim

n
an( f ) = µ( f ) a.s.

We do not know whether E
{

ϕ
(

Dn( f )
)
| Fn

}
converges a.s. (and not only in probabil-

ity) under the conditions of Theorem 1. However, it can be shown that E
{

ϕ
(

Dn( f )
)
| Fn

}
converges a.s. under slightly stronger conditions on qn.
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Under conditions (2)–(3), for Theorem 1 to work, it suffices that

lim
n

nb (1− qn) = c for some b > 1/2 and c > 0. (10)

In addition, if (10) holds, then

nb−1/2

dn
→ c√

2b− 1
.

Hence, letting D∗n = nb−1/2(an − µ), one obtains

(
D∗n( f1), . . . , D∗n( fp)

)
−→ Np

(
0,

c2

2b− 1
Σ
)

stably,

for all p ≥ 1 and all f1, . . . , fp ∈ F, provided conditions (2), (3) and (10) hold.

We close this note with some examples.

Example 1. Let

qn =
n + θn

n + 1 + θn+1

where (θn) is a bounded increasing sequence with θ0 > 0. Then, X is c.i.d. (because of (2)–(3)) but is
exchangeable if and only if θn = θ0 for all n. In any case, since condition (10) holds with b = c = 1,
Theorem 1 applies and dn can be replaced by

√
n. Letting D∗n =

√
n (an − µ), it follows that(

D∗n( f1), . . . , D∗n( fp)
)
−→ Np(0, Σ) stably.

It is worth noting that, in the special case θn = θ0 for all n, the predictive distributions of X
reduce to

an =
θ0 ν + ∑n

i=1 α(Xi)

n + θ0
.

Therefore, X is a Dirichlet sequence if α = δ. The general case, where α is any kernel satisfying
condition (3), is investigated in [30]. It turns out that X satisfies most properties of Dirichlet
sequences. In particular, µ has the same distribution as

µ∗ = ∑
n

Vn α(Yn),

where (Vn) and (Yn) are independent sequences, (Yn) is i.i.d. with Y1 ∼ ν, and (Vn) has the stick
breaking distribution. Nevertheless, as shown in the next example, X can behave quite differently
from a Dirichlet sequence.

Example 2 (Example 1 continued). Let H be a countable partition of S such that H ∈ B and
ν(H) > 0 for all H ∈ H. Define

α(x) = ∑
H∈H

1H(x) ν(· | H) = ν(· | Hx) for all x ∈ S

where Hx is the only element of the partitionH, such that x ∈ H. Then, α is a regular conditional
distribution for ν given σ(H) (i.e., condition (3) holds). If the qn are as in Example 1 with θn = θ0
for all n, one obtains

an =
θ0 ν + ∑n

i=1 ν(· | HXi )

n + θ0
.

Therefore,
an � ν for all n ≥ 0. (11)
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This is a striking difference with respect to Dirichlet sequences. For instance, if ν is non-atomic,
condition (11) yields

P(Xi = Xj for some i 6= j) = 0

while P(Xi = Xj for some i 6= j) = 1 if X is a Dirichlet sequence. Note also that, for each f ∈ F,

σ2 =
∫

α(x)( f )2 µ(dx)− µ( f )2 = ∑
H∈H

ν( f | H)2 µ(H)− µ( f )2

while σ2 = µ( f 2)− µ( f )2 if X is a Dirichlet sequence. Other choices of α, which make X quite
different from a Dirichlet sequence, are in [30].

Example 3. A meaningful special case is ∑n(1− qn) < ∞. In this case,

∞

∏
j=0

qj := lim
n

n

∏
j=0

qj

exists and is strictly positive. Hence, µ admits the representation

µ = ν
∞

∏
j=0

qj +
∞

∑
i=1

α(Xi) (1− qi−1)
∞

∏
j=i

qj.

As an example, under conditions (2)–(3), Theorem 1 applies whenever

qn = exp{−(c + n)−2} for some constant c > 0.

With this choice of qn, one obtains (1− qn) (c + n)2 → 1, so that ∑n(1− qn) < ∞ and µ can be
written as above. Note also that

lim
n

dn

(c + n)3/2 =
√

3.

Therefore, for fixed f ∈ F, the rate of convergence of an( f ) to µ( f ) is n−3/2 and not the usual n−1/2.

Author Contributions: Methodology, P.B., L.P. and P.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 817257.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We are grateful to Giorgio Letta and Eugenio Regazzini. They not only in-
troduced us to probability theory, they also shared with us their enthusiasm and some of their
expertise.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dudley, R.M. Uniform Central Limit Theorems; Cambridge University Press: Cambridge, UK, 1999.
2. van der Vaart, A.; Wellner, J.A. Weak Convergence and Empirical Processes; Springer: New York, NY, USA, 1996.
3. Berti, P.; Dreassi, E.; Pratelli, L.; Rigo, P. A class of models for Bayesian predictive inference. Bernoulli 2021, 27, 702–726. [CrossRef]
4. Berti, P.; Dreassi, E.; Pratelli, L.; Rigo, P. Asymptotics of certain conditionally identically distributed sequences. Statist. Prob. Lett.

2021, 168, 108923. [CrossRef]
5. Berti, P.; Pratelli, L.; Rigo, P. Limit theorems for empirical processes based on dependent data. Electron. J. Probab. 2012, 17, 1–18.

[CrossRef]
6. Crimaldi, I.; Pratelli, L. Convergence results for conditional expectations. Bernoulli 2005, 11, 737–745. [CrossRef]
7. Goggin, E.M. Convergence in distribution of conditional expectations. Ann. Probab. 1994, 22, 1097–1114. [CrossRef]

http://doi.org/10.3150/20-BEJ1255
http://dx.doi.org/10.1016/j.spl.2020.108923
http://dx.doi.org/10.1214/EJP.v17-1765
http://dx.doi.org/10.3150/bj/1126126767
http://dx.doi.org/10.1214/aop/1176988743


Mathematics 2021, 9, 3211 11 of 11

8. Lan, G.; Hu, Z.C.; Sun, W. Products of conditional expectation operators: Convergence and divergence. J. Theore. Probab. 2021, 34,
1012–1028. [CrossRef]

9. Berti, P.; Pratelli, L.; Rigo, P. Limit theorems for a class of identically distributed random variables. Ann. Probab. 2004, 32,
2029–2052. [CrossRef]

10. Berti, P.; Crimaldi, I.; Pratelli, L.; Rigo, P. A central limit theorem and its applications to multicolor randomly reinforced urns.
J. Appl. Probab. 2011, 48, 527–546. [CrossRef]

11. Berti, P.; Pratelli, L.; Rigo, P. Exchangeable sequences driven by an absolutely continuous random measure. Ann. Probab. 2013, 41,
2090–2102. [CrossRef]

12. Blackwell, D.; Dubins, L.E. Merging of opinions with increasing information. Ann. Math. Statist. 1962, 33, 882–886. [CrossRef]
13. Cifarelli, D.M.; Regazzini, E. De Finetti’s contribution to probability and statistics. Statist. Sci. 1996, 11, 253–282. [CrossRef]
14. Cifarelli, D.M.; Dolera, E.; Regazzini, E. Frequentistic approximations to Bayesian prevision of exchangeable random elements.

Int. J. Approx. Reason. 2016, 78, 138–152. [CrossRef]
15. Dolera, E.; Regazzini, E. Uniform rates of the Glivenko-Cantelli convergence and their use in approximating Bayesian inferences.

Bernoulli 2019, 25, 2982–3015. [CrossRef]
16. Fortini, S.; Ladelli, L.; Regazzini, E. Exchangeability, predictive distributions and parametric models. Sankhyā Indian J. Stat. Ser. A
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