In this paper we give a general proof of Mean Value formulas for solutions to second order linear PDEs, only based on the local properties of their fundamental solution Gamma. Our proof requires a kind of pointwise vanishing integral condition for the intrinsic gradient of Gamma. Combining our Mean Value formulas with a "descent method" due to Kuptsov, we obtain formulas with improved kernels. As an application, we implement our general results to heat operators on stratified Lie groups and to Kolmogorov operators.

Cupini, G., Lanconelli, E. (2021). On Mean Value formulas for solutions to second order linear PDEs. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 22(2), 777-809 [10.2422/2036-2145.201904_014].

On Mean Value formulas for solutions to second order linear PDEs

Cupini, G;Lanconelli, E
2021

Abstract

In this paper we give a general proof of Mean Value formulas for solutions to second order linear PDEs, only based on the local properties of their fundamental solution Gamma. Our proof requires a kind of pointwise vanishing integral condition for the intrinsic gradient of Gamma. Combining our Mean Value formulas with a "descent method" due to Kuptsov, we obtain formulas with improved kernels. As an application, we implement our general results to heat operators on stratified Lie groups and to Kolmogorov operators.
2021
Cupini, G., Lanconelli, E. (2021). On Mean Value formulas for solutions to second order linear PDEs. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 22(2), 777-809 [10.2422/2036-2145.201904_014].
Cupini, G; Lanconelli, E
File in questo prodotto:
File Dimensione Formato  
Cupini_Lanconelli_accepted.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/841673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact