Background: Emerging data suggest that more aggressive beta-lactam PK/PD targets could minimize the occurrence of microbiological failure and/or resistance development. This study aims to assess whether a PK/PD target threshold of continuous infusion (CI) beta-lactams may be useful in preventing microbiological failure and/or resistance development in critically ill patients affected by documented Gram-negative infections. Methods: Patients admitted to intensive care units from December 2020 to July 2021 receiving continuous infusion beta-lactams for documented Gram-negative infections and having at least one therapeutic drug monitoring in the first 72 h of treatment were included. A receiver operating characteristic (ROC) curve analysis was performed using the ratio between steady-state concentration and minimum inhibitory concentration (Css/MIC) ratio as the test variable and occurrence of microbiological failure as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated. Independent risk factors for the occurrence of microbiological failure were investigated using logistic regression. Results: Overall, 116 patients were included. Microbiological failure occurred in 26 cases (22.4%). A Css/MIC ratio ≤ 5 was identified as PK/PD target cut-off with sensitivity of 80.8% (CI 60.6–93.4%) and specificity of 90.5% (CI 74.2–94.4%), and with an AUC of 0.868 (95%CI 0.793–0.924; p < 0.001). At multivariate regression, independent predictors of microbiological failure were Css/MIC ratio ≤ 5 (odds ratio [OR] 34.54; 95%CI 7.45–160.11; p < 0.001) and Pseudomonas aeruginosa infection (OR 4.79; 95%CI 1.11–20.79; p = 0.036). Conclusions: Early targeting of CI beta-lactams at Css/MIC ratio > 5 during the treatment of documented Gram-negative infections may be helpful in preventing microbiological failure and/or resistance development in critically ill patients.

Assessment of a pk/pd target of continuous infusion beta-lactams useful for preventing microbiological failure and/or resistance development in critically ill patients affected by documented gram-negative infections

Gatti M.;Pascale R.;Tonetti T.;Dell'olio A.;Giannella M.;Viale P.;Pea F.
2021

Abstract

Background: Emerging data suggest that more aggressive beta-lactam PK/PD targets could minimize the occurrence of microbiological failure and/or resistance development. This study aims to assess whether a PK/PD target threshold of continuous infusion (CI) beta-lactams may be useful in preventing microbiological failure and/or resistance development in critically ill patients affected by documented Gram-negative infections. Methods: Patients admitted to intensive care units from December 2020 to July 2021 receiving continuous infusion beta-lactams for documented Gram-negative infections and having at least one therapeutic drug monitoring in the first 72 h of treatment were included. A receiver operating characteristic (ROC) curve analysis was performed using the ratio between steady-state concentration and minimum inhibitory concentration (Css/MIC) ratio as the test variable and occurrence of microbiological failure as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated. Independent risk factors for the occurrence of microbiological failure were investigated using logistic regression. Results: Overall, 116 patients were included. Microbiological failure occurred in 26 cases (22.4%). A Css/MIC ratio ≤ 5 was identified as PK/PD target cut-off with sensitivity of 80.8% (CI 60.6–93.4%) and specificity of 90.5% (CI 74.2–94.4%), and with an AUC of 0.868 (95%CI 0.793–0.924; p < 0.001). At multivariate regression, independent predictors of microbiological failure were Css/MIC ratio ≤ 5 (odds ratio [OR] 34.54; 95%CI 7.45–160.11; p < 0.001) and Pseudomonas aeruginosa infection (OR 4.79; 95%CI 1.11–20.79; p = 0.036). Conclusions: Early targeting of CI beta-lactams at Css/MIC ratio > 5 during the treatment of documented Gram-negative infections may be helpful in preventing microbiological failure and/or resistance development in critically ill patients.
Gatti M.; Cojutti P.G.; Pascale R.; Tonetti T.; Laici C.; Dell'olio A.; Siniscalchi A.; Giannella M.; Viale P.; Pea F.
File in questo prodotto:
File Dimensione Formato  
Gatti - Beta lactams continuous infusion.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 777.43 kB
Formato Adobe PDF
777.43 kB Adobe PDF Visualizza/Apri
antibiotics-10-01311-s001.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 175.95 kB
Formato Zip File
175.95 kB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/841324
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact