Let G be a simple complex algebraic group and let K be a reductive subgroup of G such that the coordinate ring of G/K is a multiplicity free G-module. We consider the G-algebra structure of C[G/K], and study the decomposition into irreducible summands of the product of irreducible G-submodules in C[G/K]. When the spherical roots of G/K generate a root system of type A we propose a conjectural decomposition rule, which relies on a conjecture of Stanley on the multiplication of Jack symmetric functions. With the exception of one case, we show that the rule holds true whenever the root system generated by the spherical roots of G/K is direct sum of subsystems of rank one.

On the multiplication of spherical functions of reductive spherical pairs of type A

Gandini, Jacopo
In corso di stampa

Abstract

Let G be a simple complex algebraic group and let K be a reductive subgroup of G such that the coordinate ring of G/K is a multiplicity free G-module. We consider the G-algebra structure of C[G/K], and study the decomposition into irreducible summands of the product of irreducible G-submodules in C[G/K]. When the spherical roots of G/K generate a root system of type A we propose a conjectural decomposition rule, which relies on a conjecture of Stanley on the multiplication of Jack symmetric functions. With the exception of one case, we show that the rule holds true whenever the root system generated by the spherical roots of G/K is direct sum of subsystems of rank one.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/841065
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact