We show how nonlocal boundary conditions of Robin type can be encoded in the pointwise expression of the fractional operator. Notably, the fractional Laplacian of functions satisfying homogeneous nonlocal Neumann conditions can be expressed as a regional operator with a kernel having logarithmic behaviour at the boundary.

Abatangelo N. (2020). A remark on nonlocal Neumann conditions for the fractional Laplacian. ARCHIV DER MATHEMATIK, 114(6), 699-708 [10.1007/s00013-020-01440-9].

A remark on nonlocal Neumann conditions for the fractional Laplacian

Abatangelo N.
2020

Abstract

We show how nonlocal boundary conditions of Robin type can be encoded in the pointwise expression of the fractional operator. Notably, the fractional Laplacian of functions satisfying homogeneous nonlocal Neumann conditions can be expressed as a regional operator with a kernel having logarithmic behaviour at the boundary.
2020
Abatangelo N. (2020). A remark on nonlocal Neumann conditions for the fractional Laplacian. ARCHIV DER MATHEMATIK, 114(6), 699-708 [10.1007/s00013-020-01440-9].
Abatangelo N.
File in questo prodotto:
File Dimensione Formato  
s00013-020-01440-9.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 325.15 kB
Formato Adobe PDF
325.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/835032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 7
social impact