We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-Δ)s of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of s-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for s ∈ (1; √ 3 + 3=2) in any dimension n ≥ 2. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.

Abatangelo N., Jarohs S., Saldana A. (2021). Fractional Laplacians on ellipsoidsy. MATHEMATICS IN ENGINEERING, 3(5), 1-34 [10.3934/mine.2021038].

Fractional Laplacians on ellipsoidsy

Abatangelo N.;
2021

Abstract

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-Δ)s of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of s-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for s ∈ (1; √ 3 + 3=2) in any dimension n ≥ 2. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.
2021
Abatangelo N., Jarohs S., Saldana A. (2021). Fractional Laplacians on ellipsoidsy. MATHEMATICS IN ENGINEERING, 3(5), 1-34 [10.3934/mine.2021038].
Abatangelo N.; Jarohs S.; Saldana A.
File in questo prodotto:
File Dimensione Formato  
10.3934_mine.2021038.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/835023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact