For a simple, rigid vector bundle F on a Calabi–Yau 3-fold Y, we construct a symmetric obstruction theory on the Quot scheme QuotY(F,n), and we solve the associated enumerative theory. We discuss the case of other 3-folds. Exploiting the critical structure on the local model QuotAjavax.xml.bind.JAXBElement@e117367(O⊕r,n), we construct a virtual motive (in the sense of Behrend–Bryan–Szendrői) for QuotY(F,n) for an arbitrary vector bundle F on a smooth 3-fold Y. We compute the associated motivic partition function. We obtain new examples of higher rank (motivic) Donaldson–Thomas invariants.
Ricolfi A.T. (2020). Virtual classes and virtual motives of Quot schemes on threefolds. ADVANCES IN MATHEMATICS, 369, 1-32 [10.1016/j.aim.2020.107182].
Virtual classes and virtual motives of Quot schemes on threefolds
Ricolfi A. T.
2020
Abstract
For a simple, rigid vector bundle F on a Calabi–Yau 3-fold Y, we construct a symmetric obstruction theory on the Quot scheme QuotY(F,n), and we solve the associated enumerative theory. We discuss the case of other 3-folds. Exploiting the critical structure on the local model QuotAjavax.xml.bind.JAXBElement@e117367(O⊕r,n), we construct a virtual motive (in the sense of Behrend–Bryan–Szendrői) for QuotY(F,n) for an arbitrary vector bundle F on a smooth 3-fold Y. We compute the associated motivic partition function. We obtain new examples of higher rank (motivic) Donaldson–Thomas invariants.File | Dimensione | Formato | |
---|---|---|---|
1906.02557v2.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
389.49 kB
Formato
Adobe PDF
|
389.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.